Лейкоцитарно-тромбоцитарные комплексы в патогенезе острого коронарного синдрома. Часть 1

Авторы: Пинегина Н.В.

Организация:
ГБОУ ВПО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава РФ; ул. Делегатская, 20/1, Москва, 127473, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Тип статьи: Фундаментальные вопросы кардиологии

DOI: https://doi.org/10.15275/kreatkard.2016.02.03

УДК: 616.132.2:616.155.2/3

Для цитирования:  Пинегина Н.В. Лейкоцитарно-тромбоцитарные комплексы в патогенезе острого коронарного синдрома. Часть 1. Креативная кардиология. 2016; 10 (2): 128-135. DOI: 10.15275/kreatkard.2016.02.03

Ключевые слова: острый коронарный синдром, атеросклероз, лейкоцитарно-тромбоцитарные комплексы, экстраклеточные везикулы, проточная цитометрия

Полнотекстовая версия:  

 

Аннотация

Традиционно роль тромбоцитов в патогенезе острого коронарного синдрома (ОКС), как полагают, состоит в образовании тромба при разрыве атеросклеротических бляшек. Формирование лейкоцитарно-тромбоцитарных комплексов (ЛТК) может быть связующим звеном между тромбообразованием и воспалением в процессе активации тромбоцитов при ОКС. Хотя повышение уровня агрегатов лейкоцитов с тромбоцитами при ОКС описано ранее, вклад комплексообразования в прогрессирование атеросклероза и дестабилизацию бляшек неясен. Также неизвестно, представляет ли собой формирование ЛТК системное явление или играет локальную роль в патогенезе местного интракоронарного воспаления при ОКС, и являются ли агрегаты в периферической крови комплексами лейкоцитов с тромбоцитами или с тромбоцитарными везикулами. В настоящем обзоре представлены механизмы образования ЛТК, методы определения лейкоцитарно-тромбоцитарных агрегатов в периферической крови, а также влияние терапии на формирование и стабильность ЛТК.

Литература

  1. Zarbock A., Polanowska-Grabowska R., Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 2007; 21: 99–111.
  2. Ott I., Neumann F.-J., Gawaz M., Schmitt M., Schomig A. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation. 1996; 94: 1239–46.
  3. Mickelson J.K., Lakkis N.M., Villarreal-Levy G., Hughes B.J., Smith C.W. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? J. Am. Coll. Cardiol. 1996; 28: 345–53.
  4. Furman M.I., Barnard M.R., Krueger L.A., Fox M.L., Shilale E.A., Lessard D.M. et al. Circulating Monocyte-platelet aggregates are an early marker of acute myocardial infarction. J. Am. Coll. Cardiol. 2001; 38: 1002–6.
  5. Htun P., Fateh-moghadam S., Tomandl B., Klinger K., Stellos K., Garlichs C. et al. Course of platelet activation and platelet-leukocyte interaction in cerebrovascular ischemia. Stroke. 2006; 37: 2283–7.
  6. Joseph J.E., Harrison P., Mackie I.J., Isenberg D.A., Haemostasis S.J.M. Increased circulating plateletleucocyte complexes and platelet activation in patients with antiphospholipid syndrome, systemic lupus erythematosus and rheumatoid arthritis. Brithsh J. Haematol. 2001; 115: 451–9.
  7. Singh M.V., Davidson D.C., Kiebala M., Maggirwar S.B. Detection of circulating platelet-monocyte complexes in persons infected with human immunodeficiency virus type-1. J. Virol. Methods. 2012; 181 (2): 170–6.
  8. Schrottmaier W.C., Kral J.B., Badrnya S., Assinger A. Aspirin and P2Y12 inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb. Haemost. 2015; 114: 478–89.
  9. Köhler D., Straub A., Weissmüller T., Faigle M., Bender S., Lehmann R. et al. Phosphorylation of vasodilator-stimulated phosphoprotein prevents platelet-neutrophil complex formation and dampens myocardial ischemia-reperfusion injury. Circulation. 2011; 123: 2579–90.
  10. Zarbock A., Singbartl K.L.K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J. Clin. Invest. 2006; 116: 3211–9.
  11. Totani L., Evangelista V. Platelet-leukocyte interactions in cardiovascular disease and beyond. Arter. Thromb. Vasc. Biol. 2010; 30: 2357–61.
  12. Barnard M.R., Krueger L.A., Frelinger A.L., III., Mark I. Furman and ADM. Whole blood analysis of leukocyte-platelet. In: Current protocols in cytometry. 2003: 1–8.
  13. Li N. Platelet-lymphocyte cross-talk. J. Leukoc. Biol. 2008; 83: 1069–78.
  14. Davi G., Patrono C. Platelet activation and atherothrombosis. N. Engl. J. Med. 2007; 357: 2482–94.
  15. Yokoyama S., Ikeda H., Haramaki N., Yasukawa H., Murohara T., Imaizumi T. Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates. J. Am. Coll. Cardiol. 2005; 45: 1280–6.
  16. Zarbock A., Müller H., Kuwano Y., Ley K. PSGL-1-dependent myeloid leukocyte activation. J. Leukoc. Biol. 2009; 86: 1119–24.
  17. Moore K.L., Thompson L.F. P-selectin (CD62) binds to subpopulations of human memory T lymphocytes and natural killer cells. Biochem. Biophys. Res. Commun. 1992; 186: 173–81.
  18. Ley K. The role of selectins in inflammation and disease. Trends Mol. Med. 2003; 9: 263–8.
  19. McEver R.P., Cummings R.D. Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 1997; 100: 485–91.
  20. Borges E., Tietz W., Steegmaier M., Moll T., Hallmann R., Hamann A. et al. P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J. Exp. Med. 1997; 185: 573–8.
  21. Sarma J., Laan C.A., Alam S., Jha A., Fox K.A.A., Dransfield I. Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation. 2002; 105: 2166–71.
  22. Hermann A., Rauch B.H., Braun M., Schrör K., Weber A.A. Platelet CD40 ligand (CD40L) – subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets. 2001; 12: 74–82.
  23. McEver R.P. Selectins: lectins that initiate cell adhesion under flow. Curr. Opin. Cell. Biol. 2002; 14: 581–6.
  24. Van Gils J.M., Zwaginga J.J., Hordijk P.L. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J. Leukoc. Biol. 2008; 85: 195–204.
  25. Schulz C., Von Brühl M.L., Barocke V., Cullen P., Mayer K., Okrojek R. et al. EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall. J. Thromb. Haemost. 2011; 9: 1007–19.
  26. Haselmayer P., Grosse-Hovest L., Von Landenberg P., Schild H., Radsak M.P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood. 2007; 110: 1029–35.
  27. Harding S.A., Sarma J., Josephs D.H., Cruden N.L., Din J.N., Twomey P.J. et al. Upregulation of the CD40/CD40 ligand dyad and platelet-monocyte aggregation in cigarette smokers. Circulation. 2004; 109: 1926–9.
  28. Henn V., Slupsky J.R., Gräfe M., Anagnostopoulos I., Förster R., Müller-Berghaus G. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998; 391: 591–4.
  29. Kuckleburg C.J., Yates C.M., Kalia N., Zhao Y., Nash G.B., Watson S.P. et al. Endothelial cell-borne platelet bridges selectively recruit monocytes in human and mouse models of vascular inflammation. Cardiovasc. Res. 2011; 91: 134–41.
  30. Passacquale G., Vamadevan P., Pereira L., Hamid C., Corrigall V., Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One. 2011; 6: e25595.
  31. Li N., Hu H., Lindqvist M., Wikström-Jonsson E., Goodall A.H., Hjemdahl P. Platelet-leukocyte cross talk in whole blood. Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2702–8.
  32. Von Hundelshausen P., Koenen R.R., Sack M., Mause S.F., Adriaens W., Proudfoot A.E.I. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood. 2016; 105: 924–31.
  33. Breet N.J., van Werkum J.W., Bouman H.J., Kelder J.C., Ruven H.J.T., Bal E.T. et al. Comparison of Platelet function tests undergoing coronary stent implantation. JAMA. 2010; 303: 755–62.
  34. Rutten B., Tersteeg C., Vrijenhoek J.E.P., van Holten T.C., Elsenberg E.H.A.M., Mak-Nienhuis E.M. et al. Increased platelet reactivity is associated with circulating platelet-monocyte complexes and macrophages in human atherosclerotic plaques. PLoS One. 2014; 9: e105019.
  35. Huo Y., Schober A., Forlow S.B., Smith D.F., Hyman M.C., Jung S. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 2003; 9: 61–7.
  36. Michelson A.D., Barnard M.R., Krueger L.A., Valeri C.R., Furman M.I. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation. 2001; 104: 1533–7.
  37. Bouman H.J., Parlak E., Van Werkum J.W., Breet N.J., Ten Cate H., Hackeng C.M. et al. Which platelet function test is suitable to monitor clopidogrel responsiveness? A pharmacokinetic analysis on the active metabolite of clopidogrel. J. Thromb. Haemost. 2010; 8: 482–8.
  38. Michelson A.D., Barnard M.R., Hechtmant H.B., Macgregor H., Connolly R.J., Loscalzoii J. et al. In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc. Natl. Acad. Sci. U. 1996; 93: 11877–82.
  39. Marquardt L., Ruf A., Mansmann U., Winter R., Schuler M., Buggle F. et al. Course of platelet activation markers after ischemic stroke. Stroke. 2002; 33: 2570–4.
  40. Nagy B., Jr, Debreceni I.B., Kappelmayer J. Flow cytometric investigation of classical and alternative platelet activation markers. J. Int. Fed. Clin. Chem. Lab. Med. 2012; 23: 1–11.
  41. Mody M., Lazarus A.H., Semple J.W., Freedman J. Preanalytical requirements for flow cytometric evaluation of platelet activation: choice of anticoagulant. Transfus. Med. 1999; 9: 147–54.
  42. Harding S.A., Din J.N., Sarma J., Jessop A., Weatherall M., Fox K.A.A. et al. Flow cytometric analysis of circulating platelet-monocyte aggregates in whole blood: methodological considerations. Thromb. Haemost. 2007; 98: 451–6.
  43. Majumder B., North J., Mavroudis C., Rakhit R., Lowdell M.W. Improved accuracy and reproducibility of enumeration of platelet – monocyte complexes through use of doublet-discriminator strategy. Cytometry. Part B. Clin. Cytometry. 2012; 82 (6): 353–9.
  44. White J.G., Escolar G. EDTA-induced changes in platelet structure and function: adhesion and spreading. Platelets. 2000; 11: 56–61.
  45. Fox C.H., Johnson F.B., Whiting J., Roller P.P. Formaldehyde fixation. J. Histochem. Cytochem. 1985; 33: 845–53.
  46. Thavarajah R., Mudimbaimannar V., Rao U., Ranganathan K., Elizabeth J. Chemical and physical basics of routine formaldehyde fixation. J. Oral. Maxillofac. Pathol. 2012; 16: 400–5.
  47. Kingston J.K., Bayly W.M., Sellon D.C., Meyers K.M., Wardrop K.J. Effects of formaldehyde fixation on equ platelets using flow cytometric methods to evaluate markers of platelet activation. Am. J. Vet. Res. 2002; 63: 840–4.

Об авторах

  • Пинегина Наталья Викторовна, кардиолог, аспирант, лаборант

Электронная подписка

Для получения доступа к тексту статей журнала воспользуйтесь услугой «Электронная подписка»:

Оформить подписку Подробнее об электронной подписке

Главный редактор

Лео Антонович Бокерия, академик РАН и РАМН

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент



 Если вы заметили опечатку, выделите текст и нажмите alt+A