COVID-19 cardiac injury: is there a common approach to nosological classification?

Authors: Ilov N.N., Adzhyan M.S., Imamutdinov A.F., Ahtyamova K.V.

Company: 1 Federal Center for Cardiovascular Surgery, Astrakhan’, Russian Federation
2 Astrakhan State Medical University, Astrakhan’, Russian Federation
3 Alexander Mariinsky Regional Clinical Hospital, Astrakhan’, Russian Federation
4 Regional Cardiologic Dispensary, Astrakhan’, Russian Federation
5 Сity Polyclinic # 3, Astrakhan’, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2021-15-2-157-166

For citation: Ilov N.N., Adzhyan M.S., Imamutdinov A.F., Akhtyamova K.V. COVID-19 cardiac injury: is there a common approach to nosological classification? Creative Cardiology. 2021; 15 (2): 157–66 (in Russ.). DOI: 10.24022/1997-3187-2021-15-2-157-166

Received / Accepted:  08.06.2021 / 28.06.2021

Keywords: SARS-CoV-2 infection COVID-19 cardiac injury

Full text:  

 

Abstract

The literature review showed the main scenarios of SARS-CoV-2-associated myocardial injury. On the basis of the analysis of literature it can be concluded that myocardial lesion is multi-factor at COVID-19. Possible scenarios include direct damage to myocardium, development of acute systemic inflammatory response and cytokine storm, effects of acute respiratory distress syndrome, coagulopathy and electrolyte imbalance associated with COVID-19, as well as the toxic effects of drugs used in SARS-CoV-2 treatment schemes. At the same time, a rather vague concept – «acute damage of myocardium» – is often used to describe symptoms and laboratory changes in literature. Given the multifactor of myocardial lesions in COVID-19, the clinician often faces a difficult situation – the need for a nosological interpretation of the clinical status of the patient. Knowledge and correct verification of the leading pathogenetic variant of a heart injury can simplify this task, narrow the scope of diagnostic monitoring and organize a personalized approach to therapy

References

  1. Wu Y. Compensation of ACE2 function for possible clinical management of 2019-nCoV-Induced acute lung injury. Virol. Sin. 2020; 35: 256–8. DOI: 10.1007/s12250-020-00205-6
  2. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020; 14: 247–50. DOI: 10.1016/j.dsx.2020.03.013
  3. Mahmud E., Dauerman H.L., Welt FG.P., Messenger J.C., Rao S.V., Grines C. et al. Management of acute myocardial infarction during the COVID-19 pandemic. J. Am. Coll. Cardiol. 2020; 76: 1375–84. DOI: 10.1016/j.jacc.2020.04.039
  4. Zheng Y.-Y., Ma Y.-T., Zhang J.-Y., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020; 17: 259–60.
  5. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019; 40: 237–69. DOI: 10.1093/eurheartj/ehy462
  6. Bikdeli B., Madhavan M.V., Jimenez D., Chuich T., Dreyfus I., Driggin E. et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J. Am. Coll. Cardiol. 2020; 75: 2950–73. DOI: 10.1016/j.jacc.2020.04.031
  7. Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46: 586–90. DOI: 10.1007/s00134-020-05985-9
  8. Kogan E.A., Berezovskiy Yu.S., Blagova O.V., Kukleva A.D., Bogacheva G.A., Kurilina E.V. et al. Miocarditis in patients with COVID-19 confirmed by immunohistochemical. Kardiologiia. 2020; 60: 4–10 (in Russ.). DOI: 10.18087/cardio.2020.7.n1209
  9. Tavazzi G., Pellegrini C., Maurelli M., Belliato M., Sciutti F., Bottazzi A. et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 2020; 22: 911–5. DOI: 10.1002/ejhf.1828
  10. Puntmann V.O., Carerj M.L., Wieters I., Fahim M., Arendt C., Hoffmann J. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5: 1265. DOI: 10.1001/jamacardio.2020.3557
  11. Caforio A.L.P., Pankuweit S., Arbustini E., Basso C., Gimeno-Blanes J., Felix S.B. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013; 34: 2636–48. DOI: 10.1093/eurheartj/eht210
  12. Newton-Cheh C., Zlotoff D.A., Hung J., Rupasov A., Crowley J.C., Funamoto M. Case 24-2020: A 44-year-old woman with chest pain, dyspnea, and shock. N. Engl. J. Med. 2020; 383: 475–84. DOI: 10.1056/NEJMcpc2004975
  13. Liu P.P., Blet A., Smyth D., Li H. The science underlying COVID-19. Circulation. 2020; 142: 68–78. DOI: 10.1161/CIRCULATIONAHA.120. 047549
  14. Sugraliyev A.B. Cardiac involvement in COVID-19. Kardiologiia. 2021; 61 (4): 15–23 (in Russ.). DOI: 10.18087/cardio.2021.4.n1408.
  15. Lodigiani C., Iapichino G., Carenzo L., Cecconi M., Ferrazzi P., Sebastian T. et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020; 191: 9–14. DOI: 10.1016/j.thromres.2020.04.024
  16. Ashraf S., Ilyas S., Alraies M.C. Acute coronary syndrome in the time of the COVID-19 pandemic. Eur. Heart J. 2020; 41: 2089–91. DOI: 10.1093/eurheartj/ehaa454
  17. Libby P., Loscalzo J., Ridker P.M., Farkouh M.E., Hsue P.Y., Fuster V. et al. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J. Am. Coll. Cardiol. 2018; 72: 2071–81.
  18. Pustjens T.F.S., Appelman Y., Damman P., ten Berg J.M., Jukema J.W., de Winter R.J. et al. Guidelines for the management of myocardial infarction/injury with non-obstructive coronary arteries (MINOCA): a position paper from the Dutch ACS working group. Netherlands Hear J. 2020; 28: 116–30. DOI: 10.1007/s12471-019-01344-6
  19. Eroˇglu S.E., Ademoˇglu E., Bayram S., Aksel G. A rare cause of ST-segment elevation myocardial infarction in COVID-19: MINOCA syndrome. Medeni Med. J. 2021. DOI: 10.5222/MMJ.2021. 25478 20. Barbarash O.L., Kashtalap V.V. Fourth universal definition of myocardial infarction. Focus on the type 2 myocardial infarction. Fundamental and Clinical Medicine. 2018; 3: 73–82 (in Russ.). DOI: 10.23946/2500-0764-2018-3-4-73-82.
  20. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017; 39: 529–39. DOI: 10.1007/s00281-017-0629-x
  21. Ferreira V., Borba H.L., de Bonetti F.A., Leonart P.L., Pontarolo R. Cytokines and interferons: types and functions. Autoantibodies and Cytokines. IntechOpen; 2019. DOI: 10.5772/intechopen.74550
  22. Chen C., Zhang X.R., Ju Z.Y., He W.F. Advances in the research of mechanism and related immunotherapy on the cytokine storm induced by coronavirus disease 2019. Zhonghua Shao Shang Za Zhi. 2020; 36: 471–5. DOI: 10.3760/cma.j.cn501120- 20200224-00088
  23. Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K. et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARSCoV-infected mice. Cell Host Microbe. 2016; 19: 181–93. DOI: 10.1016/j.chom.2016.01.007
  24. Abhyankar S., Gilliland D.G., Ferrara J.L.M. Interleukin-1 is a critical effector molecule during cytokine dysregulation in graft versus host disease to minor histocompatibility antigens-1. Transplantation. 1993; 56: 1518–22. DOI: 10.1097/00007890- 199312000-00045
  25. Parrish A.R. The impact of aging on epithelial barriers. Tissue Barriers. 2017; 5: e1343172. DOI: 10.1080/21688370.2017.1343172
  26. Fara A., Mitrev Z., Rosalia R.A., Assas B.M. Cytokine storm and COVID-19: a chronicle of proinflammatory cytokines: cytokine storm: the elements of rage! Open Biol. 2020; 10. DOI: 10.1098/rsob.200160
  27. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46: 846–8. DOI: 10.1007/s00134-020-05991-x
  28. Wu C., Hu X., Song J., Du C., Xu J., Yang D. et al. Heart injury signs are associated with higher and earlier mortality in coronavirus disease 2019 (COVID-19). MedRxiv 2020. DOI: 10.1101/2020.02.26.20028589
  29. Pathan N., Hemingway C.A., Alizadeh A.A., Stephens A.C., Boldrick J.C., Oragui E.E. et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 2004; 363: 203–9. DOI: DOI: 10.1016/S0140-6736(03) 15326-3
  30. Mondal R., Lahiri D., Deb S., Bandyopadhyay D., Shome G., Sarkar S. et al. COVID-19: are we dealing with a multisystem vasculopathy in disguise of a viral infection? J. Thromb. Thrombolysis. 2020; 50: 567–79. DOI: 10.1007/s11239-020-02210-8
  31. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395: 1417–8. DOI: 10.1016/S0140-6736(20)30937-5
  32. Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020; 116: 1097–100. DOI: 10.1093/cvr/cvaa078
  33. AbdelMassih A.F., Ramzy D., Nathan L., Aziz S., Ashraf M., Youssef N.H. et al. Possible molecular and paracrine involvement underlying the pathogenesis of COVID-19 cardiovascular complications. Cardiovasc. Endocrinol. Metab. 2020; 9: 121–4. DOI: 10.1097/XCE.0000000000000207
  34. Kogan E.A., Berezovsky Yu.S., Protsenko D.D., Bagdasaryan T.R., Gretsov E.M., Demura S.A. et al. Pathological anatomy of infection caused by Sars-Cov-2. Russian Journal of Forensic Medicine. 2020; 6: 8–30 (in Russ.). DOI: 10.19048/2411-8729-2020-6-2-8-30
  35. Yavelov I.S., Drapkina O.M. COVID-19: Hemostatic parameters and specifics of antithrombotic treatment. Cardiovascular Therapy and Prevention. 2020; 19: 310–8 (in Russ.). DOI: 10.15829/1728- 8800-2020-2571
  36. Kubanov A.A., Deryabin D.G. A new look at the COVID-19 pathogenesis: the disease is a generalized viral vasculitis, and the lung tissue damage is a variant of angiogenic pulmonary edema. Annals of the Russian Academy of Medical Sciences. 2020; 75 (2): 115–7 (in Russ.). DOI: 10.15690/vramn1347
  37. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7: e438–40. DOI: 10.1016/S2352-3026(20)30145-9
  38. Kupferschmidt K., Cohen J. Race to find COVID-19 treatments accelerates. Science. 2020; 367 (6485): 1412–3. DOI: 10.1126/science.367.6485.1412
  39. Cortegiani A., Ingoglia G., Ippolito M., Giarratano A., Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care. 2020; 57: 279–83. DOI: 10.1016/j.jcrc.2020.03.005
  40. Maisch N.M., Kochupurackal J.G., Sin J. Azithromycin and the risk of cardiovascular complications. J. Pharm. Pract. 2014; 27: 496–500. DOI: 10.1177/0897190013516503

About Authors

  • Nikolay N. Ilov, Cand. Med. Sci., Associate Professor, Cardiovascular Surgeon; ORCID
  • Mariam S. Adzhyan, Cardiologist; ORCID
  • Anver F. Imamutdinov, Cardiologist; ORCID
  • Kristina V. Akhtyamova, Cardiologist; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery