Hypertensive response during exercise stress echocardiography: the impact on left ventricle systolic function

Authors: Karev E.A., Malev E.G., Suvorov A.Yu., Bobrova E.A., Verbilo S.L., Prokudina M.N.

Company: 1 V.A. Almazov National Medical Research Center of the Ministry of Health of the Russian Federation, Saint Petersburg, Russian Federation
2 Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, Saint Petersburg, Russian Federation
3 Pharmaceutical company “Feron” Moscow, Russian Federation
4 International Heart Center, Saint Petersburg, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2021-15-3-354-366

For citation: Karev E.A., Malev E.G., Suvorov A.Yu., Bobrova E.A., Verbilo S.L., Prokudina M.N. Hypertensive response during exercise stress echocardiography: the impact on left ventricle systolic function. Creative Cardiology. 2021; 15 (3): 354–66 (in Russ.). DOI: 10.24022/1997-3187-2021-15-3-354-366

Received / Accepted:  29.04.2021 / 01.09.2021

Keywords: stress echocardiography strain hypertensive response to exercise dyssynchrony

Full text:  

 

Abstract

Objective. To analyze systolic strain and dyssynchrony parameters during stress echocardiography depending on the type of blood pressure (BP) response to exercise in patients without obstructive coronary disease

Material and methods. 96 patients without significant coronary artery stenosis by invasive coronary angiography or CT-coronary angiography results underwent stress echocardiography on treadmill with 2D and 3D images analysis, left ventricle global longitudinal strain (GLS) and dyssynchrony assessment at rest and on stress. Patients were divided into two groups: with normal (n = 55) and hypertensive response to exercise (n = 41) (HRE).

Results. HRE was associated with diminished increase in left ventricle 2D-ejection fraction, smaller peak exertional GLS and GLS increase, more frequent wall motion abnormalities during test (all р < 0.01). Patient’s age older than 60 years, double product > 26010 and GLS on exertion >–22% were predictors of poor GLS increase (AUC 0.843, р = 0.0002), systolic BP > 140 mm Hg at rest, 2D-ejection fraction increment < 6% and decrease in Tmsv%R-R more than 4% were predictors of transient regional wall motion abnormalities on exertion (AUC 0.87, р = 0.008). Standard deviation of time from the QRS complex onset to the peak segmental longitudinal strain and systolic BP on exertion had positive correlation (p < 0.0001).

Conclusion. Patients with HRE demonstrate higher prevalence of left ventricle systolic dysfunction and dyssynchrony during stress echocardiography even in absence of coronary artery stenosis, which can alter the specificity of the test. Medical therapy adjustment before test is crucial in patients with HRE and uncontrolled hypertension. Patient’s age and double product are independent predictors of insufficient increase in GLS.

References

  1. Mazic S., Suzic Lazic J., Dekleva M., Antic M., Soldatovic I., Djelic M. et al. The impact of elevated blood pressure on exercise capacity in elite athletes. Int. J. Cardiol. 2015; 180: 171–7. DOI: 10.1016/j.ijcard.2014.11.125
  2. Mizuno R., Fujimoto S., Saito Y., Yamazaki M. Clinical importance of detecting exaggerated blood pressure response to exercise on antihypertensive therapy. Heart. 2016; 102 (11): 849–54. DOI: 10.1136/heartjnl-2015-308805
  3. Prada-Delgado O. Prognostic value of exerciseinduced left ventricular systolic dysfunction in hypertensive patients without coronary artery disease. Rev. Esp. Cardiol. 2015; 68 (2): 107–14. DOI: 10.1016/j.rec.2014.03.023
  4. Lauer M.S., Levy D., Anderson K.M., Plehn J.F. Is there a relationship between exercise systolic blood pressure response and left ventricular mass? The Framingham Heart Study. Ann. Intern. Med. 1992; 116 (3): 203–10. DOI: 10.7326/0003-4819-116-3-203
  5. Weiss S.A., Blumenthal R.S., Sharrett A.R., Redberg R.F., Mora S. Exercise blood pressure and future cardiovascular death in asymptomatic individuals. Circulation. 2010; 121 (19): 2109–16. DOI: 10.1161/CIRCULATIONAHA.109.895292
  6. Shim C.Y., Ha J.W., Park S., Choi E.Y., Choi D., Rim S.J. et al. Exaggerated blood pressure response to exercise is associated with augmented rise of angiotensin II during exercise. J. Am. Coll. Cardiol. 2008; 52 (4): 287–92. DOI: 10.1016/j.jacc.2008.03.052
  7. Tzemos N., Lim P.O., MacDonald T.M. Is exercise blood pressure a marker of vascular endothelial function? QJM: An. Int. J. Med. 2002; 95 (7): 423–9. DOI: 10.1093/qjmed/95.7.423
  8. Hung C.L., Gonçalves A., Shah A.M., Cheng S., Kitzman D., Solomon S.D. Age- and sex-related influences on left ventricular mechanics in elderly individuals free of prevalent heart failure: the ARIC study (Atherosclerosis Risk in Communities). Circ. Cardiovasc. Imaging. 2017; 10 (1): e004510. DOI: 10.1161/CIRCIMAGING.116.004510
  9. Nagata Y., Takeuchi M., Mizukoshi K., Wu V.C., Lin F.C., Negishi K. et al. Intervendor variability of two-dimensional strain using vendor-specific and vendor-independent software. J. Am. Soc. Echocardiogr. 2015; 28 (6): 630–41. DOI: 10.1016/j.echo.2015.01.021
  10. Donal E., Bergerot C., Thibault H., Ernande L., Loufoua J., Augeul L. et al. Influence of afterload on left ventricular radial and longitudinal systolic functions: a two-dimensional strain imaging study. Eur. J. Echocardiogr. 2009; 10 (8): 914–21. DOI: 10.1093/ejechocard/jep095
  11. Delgado V., Tops L.F., van Bommel R.J., van der Kley F., Marsan N.A., Klautz R.J. et al. Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement. Eur. Heart J. 2009; 30 (24): 3037–47. DOI: 10.1093/eurheartj/ehp351
  12. Ha J.W., Juracan E.M., Mahoney D.W., Oh J.K., Shub C., Seward J.B., Pellikka P.A. Hypertensive response to exercise: a potential cause for new wall motion abnormality in the absence of coronary artery disease. J. Am. Coll. Cardiol. 2002; 39 (2): 323–7. DOI: 10.1016/s0735-1097(01)01743-0
  13. Ross Agner B.F., Katz M.G., Williams Z.R., Dixen U., Jensen G.B., Schwarz K.Q. Left Ventricular systolic function assessed by global longitudinal strain is impaired in atrial fibrillation compared to sinus rhythm. J. Atr. Fibrillation. 2017; 10 (4): 1437. DOI: 10.4022/jafib.1437
  14. Pavlyukova E.N., Kuzhel' D.A., Matyushin G.V., Veselkova N.S., Avdeeva O.V., Metelitsa V.S., Samokhvalov E.V., Savchenko E.A. Myocardial deformation and complete left bundle branch block. Rational Pharmacotherapy in Cardiology. 2012; 8 (6): 781–7 (in Russ.). DOI: 10.20996/1819-6446-2012-8-6-781-787
  15. Komissarova S.M., Zakharova E.Yu., Sevruk Т.V., Ustinova I.B., Krasko O.V. Predictive value of the global longitudinal strain in hypertrophic cardiomyopathy patients. Russian Journal of Cardiology. 2018; (2): 7–12. (in Russ.). DOI: 10.15829/1560-4071-2018-2-7-12
  16. Kusunose K., Goodman A., Parikh R., Barr T., Agarwal S., Popovic Z.B. et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circ. Cardiovasc. Imaging. 2014; 7 (6): 938–45. DOI: 10.1161/CIRCIMAGING.114.002041
  17. Mascle S., Schnell F., Thebault C., Corbineau H., Laurent M., Hamonic S. et al. Predictive value of global longitudinal strain in a surgical population of organic mitral regurgitation. J. Am. Soc. Echocardiogr. 2012; 25 (7): 766–72. DOI: 10.1016/j.echo.2012.04.009
  18. Von Scheidt F., Kiesler V., Kaestner M., Bride P., Krämer J., Apitz C. Left ventricular strain and strain rate during submaximal semisupine bicycle exercise stress echocardiography in healthy adolescents and young adults: systematic protocol and reference values. J. Am. Soc. Echocardiogr. 2020; S0894–7317(20)30002-X. DOI: 10.1016/j.echo.2019.12.015
  19. Yingchoncharoen T., Agarwal S., Popović Z.B., Marwick T.H. Normal ranges of left ventricular strain: a meta-analysis. J. Am. Soc. Echocardiogr. 2013; 26 (2): 185–191. DOI: 10.1016/j.echo.2012.10.008
  20. Uusitalo V., Luotolahti M., Pietila M., WendelinSaarenhovi M., Hartiala J., Saraste M. et al. Two-dimensional speckle-tracking during dobutamine stress echocardiography in the detection of myo-cardial ischemia in patients with suspected coronary artery disease. J. Am. Soc. Echocardiogr. 2016; 29: 470–9.e3. DOI: 10.1016/j.echo.2015.12.013
  21. Penicka M., Bartunek J., De Bruyne B., Vanderheyden M., Goethals M., De Zutter M. et al. Improvement of left ventricular function after cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography. Circulation. 2004; 109 (8): 978–83. DOI: 10.1161/01.CIR.0000116765.43251.D7
  22. Yu C.M., Zhang Q., Yip G.W., Lee P.W., Kum L.C., Lam Y.Y., Fung J.W. Diastolic and systolic asynchrony in patients with diastolic heart failure: a com-mon but ignored condition. J. Am. Coll. Cardiol. 2007; 49 (1): 97–105. DOI: 10.1016/j.jacc.2006.10.022
  23. Yang B., Chettiveettil D., Jones F., Aguero M., Lewis J.F. Left ventricular dyssynchrony in hypertensive patients without congestive heart failure. Clin. Cardiol. 2008; 31 (12): 597–601. DOI: 10.1002/clc.20350
  24. Bae B.S., Kim K.J., Park J.G., Jung Y.S., Ryu H.J., Kang H.J. et al. Improvement in left ventricular systolic dyssynchrony in hypertensive patients after treatment of hypertension. Korean. Circ. J. 2011; 41 (1): 16–22. DOI: 10.4070/kcj.2011.41.1.16

About Authors

  • Egor A. Karev, Functional Diagnostician, Cardiologist; ORCID
  • Ehduard G. Malev, Dr. Med. Sci., Leading Researcher of V.A. Almazov National Medical Research Center. Professor of the Department of Internal Medicine Propaedeutics of Saint Petersburg State Pediatric Medical University; ORCID
  • Aleksandr Yu. Suvorov, Cand. Med. Sci., Biostatistics Specialist; ORCID
  • Ekaterina A. Bobrova, Functional Diagnostician, Cardiologist; ORCID
  • Sergey L. Verbilo, Functional Diagnostician, Cardiologist; ORCID
  • Mariya N. Prokudina, Dr. Med. Sci., President of International Heart Center;ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery