Dynamics of echocardiographic parameters during neoadjuvant chemotherapy in patients with breast cancer

Authors: Buziashvili Yu.I., Asymbekova E.U., Matskeplishvili S.T., Tugeeva E.F., Artamonova E.V., Akildzhonov F.R.

Company: 1 Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
2 N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
3 N.I. Pirogov Russian National Research Medical University, Moscow, Russian Federation
4 M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2022-16-4-520-532

For citation: Buziashvili Yu.I., Asymbekova E.U., Matskeplishvili S.T., Tugeeva E.F., Artamonova E.V., Akildzhonov F.R. Dynamics of echocardiographic parameters during neoadjuvant chemotherapy in patients with breast cancer. Creative Cardiology. 2022; 16 (4): 520–32 (in Russ.). DOI: 10.24022/1997-3187-2022-16-4-520-532

Received / Accepted:  31.05.2022 / 28.11.2022

Keywords: cardiotoxicity tissue dopplerography neoadjuvant chemotherapy

Full text:  

 

Abstract

Objective. To analyze the dynamics and determine specific echocardiographic indicators of subclinical cardiotoxicity during neoadjuvant chemotherapy (NAC).

Material and methods. The prospective study included 72 patients with a confirmed diagnosis of breast cancer (BC) during NAC from March 2021 to February 2022, the mean age was 47.9 ± 11.9 years. All patients underwent 2D and M-mode echocardiography, pulsed wave and tissue dopplerography before the start of NAC, during the course (3 weeks) and after the completion of chemotherapy. Left ventricular (LV) systolic and diastolic function were assessed. Peak longitudinal deformation of the LV and left atrium (LA) in various projections were analyzed using the Qlab workstation.

Results. During the period of NAC, at the stage of the interim study, an increase in the end systolic volume (ESV) index by 9% was noted. After the end of NAС – an increase in the ESV index by 12%. The LV ejection fraction decreased by 8.3% after the end of NAC (p = 0.00001). There was an increase in the segmental contractility impairment index from 1.0 ± 0.3 to 1.2 ± 0.2 after the end of NAC (p = 0.00001). The integral index E/e, which correlates with LA pressure, increased after chemotherapy, which is an indicator of diastolic myocardial dysfunction. When analyzing the deformation properties of the LA, a significant deterioration in the positive global deformation (GSA+) of 11.08% and 9.9% was observed (p = 0.02) compared with baseline and negative global deformation (GSA-) of 0.35% and 0.14% (p = 0.00006) compared to baseline.

Conclusion. NAC undoubtedly causes changes in systolic and diastolic function, a decrease in LV and LA myocardial deformity.

References

  1. Miller K., Nogueira L., Mariotto A. Cancer treatment and survivorship statistics. 2019. CA Cancer J. Clin. 2019; 69 (5): 363–85. DOI: 10.3322/caac.21565
  2. Jain D., Ahmad T., Cairo M., Aronow W. Cardiotoxicity of cancer chemotherapy: identification, prevention and treatment. Ann. Transl. Med. 2017; 5 (17): 348. DOI: 10.21037/atm.2017.06.35
  3. Nagueh S., Smiseth O., Appleton C. Recommendations for the evaluation of left ventricular dia stolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016; 29 (4): 277–314. DOI: 10.1016/j.echo.2016.01.011
  4. Lyon A., López-Fernández T., Couch L., Asteggiano R., Aznar M., Bergler-Klein J. et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022; 43 (41): 4229–361. DOI: 10.1093/eurheartj/ehac244
  5. Curigliano G., Lenihan D., Fradley M. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020; 31 (2): 171–90. DOI: 10.1016/j.annonc.2019.10.023
  6. Galderisi M., Cosyns B., Edvardsen T. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2017; 18 (12): 1301–10. DOI: 10.1093/ehjci/jex244
  7. Perez I., Taveras Alam S., Hernandez G., Sancassani R. Cancer therapy-related cardiac dysfunction: an overview for the clinician. Clin. Med. Insights. Cardiol. 2019; 13: 1179546819866445. DOI: 10.1177/1179546819866445
  8. Nicol M., Baudet M., Cohen-Solal A. Subclinical left ventricular dysfunction during chemotherapy. Card. Fail. Rev. 2019; 5 (1): 31–6. DOI: 10.15420/cfr.2018.25.1
  9. Chen Z., Ai D. Cardiotoxicity associated with targeted cancer therapies. Mol. Clin. Oncol. 2016; 4 (5): 675–81. DOI: 10.3892/mco.2016.800
  10. Mahabadi A., Rischpler C. Cardiovascular imaging in cardio-oncology. J. Thorac. Dis. 2018; 10 (Suppl. 35): S4351–66. DOI: 10.21037/jtd.2018.10.92
  11. Liu J., Barac A., Thavendiranathan P., ScherrerCrosbie M. Strain imaging in cardio-oncology. JACC CardioOncol. 2020; 2 (5): 677–89. DOI: 10.1016/j.jaccao.2020.10.011
  12. Čelutkiené J., Pudil R., López-Fernández T. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the HFA, EACVI and the CardioOncology Council of the ESC. Eur. J. Heart Fail. 2020; 22 (9): 1504–24. DOI: 10.1002/ejhf.1957
  13. Lyon A., Dent S., Stanway S. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur. J. Heart Fail. 2020; 22 (11): 1945–60. DOI: 10.1002/ejhf.1920
  14. Negishi T., Miyazaki S., Negishi K. Echocardiography and cardio-oncology. Heart Lung. Circ. 2019; 28 (9): 1331–8. DOI: 10.1016/j.hlc. 2019.04.023
  15. Boyd A., Stoodley P., Richards D. Anthracyclines induce early changes in left ventricular systolic and diastolic function: a single centre study. PLoS One. 2017; 12 (4): e0175544. DOI: 10.1371/journal.pone.0175544
  16. Upshaw J., Finkelman B., Hubbard R. Comprehensive assessment of changes in left ventricular diastolic function with contemporary breast cancer therapy. JACC Cardiovasc. Imaging. 2020; 13 (1 Pt 2): 198–210. DOI: 10.1016/j.jcmg.2019.07.018
  17. Mincu R., Lampe L., Mahabadi A., Kimmig R., Rassaf T., Totzeck M. Left ventricular diastolic function following anthracycline-based chemotherapy in patients with breast cancer without previous cardiac disease – a meta-analysis. J. Clin. Med. 2021; 10 (17): 3890. DOI: 10.3390/jcm10173890
  18. Gopalakrishnan P., Biederman R. Impact of the 2016 ASE/EACVI Guidelines on diastolic function reporting in routine clinical practice. Echocardiography. 2020; 37 (4): 546–53. DOI: 10.1111/echo.14645
  19. Hu H., Zhang X., Zhang W., Huang D., Du Z. Detection of subclinical anthracyclines' cardiotoxicity in children with solid tumor. Chin. Med. J. (Engl). 2018; 131 (12): 1450–6. DOI: 10.4103/0366-6999.233950
  20. Dores H., Abecasis J., Correia M. Detection of early sub-clinical trastuzumab-induced cardiotoxicity in breast cancer patients. Arq. Bras. Cardiol. 2013; 100 (4): 328–32.
  21. Goroshi M., Chand D. Myocardial performance index (Tei index): a simple tool to identify cardiac dysfunction in patients with diabetes mellitus. Indian. Heart J. 2016; 68 (1): 83–7. DOI: 10.1016/j.ihj.2015.06.022
  22. Bennett S., Cubukcu A., Wong C. The role of the Tei index in assessing for cardiotoxicity from anthracycline chemotherapy: a systematic review. Echo. Res. Pract. 2021; 8 (1): R1–R11. DOI: 10.1530/ERP-20-0013
  23. Fabiani I., Cipolla C., Colombo N., Cardinale D. Cardioncological approach for trastuzumab therapy in breast cancer patients with cardiotoxicity: impact on adherence and clinical outcome. Front. Pharmacol. 2020; 11: 1190. DOI: 10.3389/fphar. 2020.01190
  24. Moudgil R., Hassan S., Palaskas N., LopezMattei J., Banchs J., Yusuf S. Evolution of echocardiography in subclinical detection of cancer therapy-related cardiac dysfunction. Echocardiography. 2018; 35 (6): 860–8. DOI: 10.1111/echo.14012
  25. Gripp E., Oliveira G., Feijó L., Garcia M., Xavier S., Sousa A. Global longitudinal strain accuracy for cardiotoxicity prediction in a cohort of breast cancer patients during anthracycline and/or trastuzumab treatment. Arq. Bras. Cardiol. 2018; 110 (2): 140–50. DOI: 10.5935/abc.20180021
  26. Plana J., Thavendiranathan P., BucciarelliDucci C., Lancellotti P. Multi-modality imaging in the assessment of cardiovascular toxicity in the cancer patient. JACC Cardiovasc. Imaging. 2018; 11 (8): 1173–86. DOI: 10.1016/j.jcmg.2018.06.003
  27. Gong I., Ong G., Brezden-Masley C. Early diastolic strain rate measurements by cardiac MRI in breast cancer patients treated with trastuzumab: a longitudinal study. Int. J. Cardiovasc. Imaging. 2019; 35 (4): 653–62. DOI: 10.1007/s10554-018-1482-2
  28. Oikonomou E., Kokkinidis D., Kampaktsis P. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol. 2019; 4 (10): 1007–18. DOI: 10.1001/jamacardio.2019.2952
  29. Araujo-Gutierrez R., Chitturi K., Xu J. Baseline global longitudinal strain predictive of anthracycline-induced cardiotoxicity. Cardiooncology. 2021; 7 (1): 4. DOI: 10.1186/s40959-021-00090-2
  30. Tan T., Bouras S., Sawaya H. Time trends of left ventricular ejection fraction and myocardial deformation indices in a cohort of women with breast cancer treated with Anthracyclines, Taxanes, and Trastuzumab. J. Am. Soc. Echocardiogr. 2015; 28 (5): 509–14. DOI: 10.1016/j.echo.2015.02.001

About Authors

  • Yuriy I. Buziashvili, Dr. Med. Sci., Professor, Academician of Russian Academy of Sciences, Head of Department; ORCID
  • El’mira U. Asymbekova, Dr. Med. Sci., Leading Researcher; ORCID
  • Simon T. Matskeplishvili, Dr. Med. Sci., Professor, Corresponding Member of Russian Academy of Sciences, Chief Researcher; ORCID
  • El’vina F. Tugeeva, Dr. Med. Sci., Senior Researcher; ORCID
  • Elena V. Artamonova, Dr. Med. Sci., Leading Researcher; ORCID
  • Firdavsdzhon R. Akildzhonov, Postgraduate; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery