Ограничение ишемического и реперфузионного повреждения миокарда с помощью пре- и посткондиционирования: молекулярные механизмы и мишени для фармакотерапии
Авторы:
Организация:
Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова;
ФГУ «Федеральный центр сердца, крови и эндокринологии им. В. А. Алмазова»
Тип статьи: Актуальные вопросы кардиологии и смежных дисциплин
Ключевые слова:
Скачать (Download)
Аннотация
Ограничение размера инфаркта, формирующегося вследствие острой ишемии миокарда, и ослабление таких проявлений ишемического/реперфузионного повреждения миокарда, как станнирование, нарушения ритма и невосстановление кровотока, являются важными задачами современной кардиологии. Прекондиционирование (ПреК) миокарда - один из наиболее эффективных механизмов эндогенной кардиопротекции. Обычно под ПреК понимают повышение устойчивости миокарда к продолжительной ишемии, возникающее после короткого(их) эпизода(ов) ишемии-реперфузии. В настоящее время становится очевидно, что ПреК может быть вызвано целым рядом факторов, оказывающих слабое повреждающее действие на миокард или на организм в целом. В последние годы был разработан новый подход к защите миокарда от реперфузионного повреждения, получивший название ишемического посткондиционирования (ПостК). В настоящем обзоре на основании собственных и литературных данных проводится сравнительная характеристика ПреК и ПостК, а также обсуждаются различные стимулы, вызывающие ПреК. Особое внимание уделяется фармакологическим триггерам ПреК. Кроме того, дается критический анализ клеточных и молекулярных механизмов, лежащих в основе ПреК и ПостК; приводятся данные о возможных путях использования ПреК и ПостК в клинической практике, в частности в кардиохирургии. Дальнейшие исследования будут способствовать созданию фармакологических миметиков ПреК и ПостК, индуцирующих воспроизводимый и стабильный кардиопротективный ответ и в то же время лишенных серьезных побочных эффектов.Литература
1. Галагудза М. М., Некрасова М. К., Сыренский А. В., Нифонтов Е. М. Устойчивость миокарда к ишемии и эффективность ишемического прекондиционирования при экспериментальном сахарном диабете // Рос. физиол. журн. им. И. М. Се- ченова. – 2006. – № 92. – С. 284–291.2. Петрищев Н. Н., Шляхто Е. В., Власов Т. Д., Га- лагудза М. М. Ишемическая адаптация миокарда: патофизиологические механизмы и возможные перспективы практического применения (обзор литературы) // Там же. – 2001. – № 87. – С. 688–705.
3. Петрищев Н. Н., Шляхто Е. В., Цырлин В. А. и др. Роль свободных радикалов кислорода в механизмах локального и дистантного ишемического прекондиционирования миокарда // Вестн. РАМН. – 2006. – № 8. – С. 10–15.
4. Шляхто Е. В., Галагудза М. М., Сыренский А. В., Нифонтов Е. М. Кардиопротективные эффекты феномена ишемического посткондиционирования миокарда // Кардиология. – 2005. – № 45. – С. 44–48.
5. Argaud L., Gateau-Roesch O., Raisky O. Postconditioning inhibits mitochondrial permeability transition // Circulation. – 2005. – Vol. 111. – P. 194–197.
6. Armstrong S. C. Protein kinase activation and myocardial ischemia/reperfusion injury // Cardiovasc. Res. – 2004. – Vol. 61. – P. 427–436.
7. Bilinska M., Maczewski M., Beresewicz A. Donors of nitric oxide mimic effects of ischemic preconditioning on reperfusion induced arrhythmias in isolated rat heart // Mol. Cell. Biochem. – 1996. – Vol. 161. – P. 265–271.
8. Blanc P., Aouifi A., Bouvier H., Joseph P. et al. Safety of oral nicorandil before coronary artery bypass graft surgery // Brit. J. Anesth. – 2001. – Vol. 87. – P. 848–854.
9. Bopassa J. C., Ferrera R., Gateau-Roesch O. et al. PI3- kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning // Cardiovasc. Res. – 2006. – Vol. 69. – P. 178–185.
10. Calvillo L., Latini R., Kajstura J. et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling // Proc. Natl. Acad. Sci. USA. – 2003. – Vol. 100. – P. 4802–4806.
11. Cason B. A., Gamperl A. K., Slocum R. E., Hickey R. F. Anesthetic-induced preconditioning: previous administration of isoflurane decreases myocardial infarct size in rabbits // Anesthesiology. – 1997. – Vol. 87. – P. 1182–1190.
12. Cheung M. M., Kharbanda R. K., Konstantinov I. E. et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans // J. Amer. Coll. Cardiol. – 2006. – Vol. 47. – P. 2277–2282.
13. Dana A., Baxter G. F., Walker J. M., Yellon D. M. Prolonging the delayed phase of myocardial protection: repetitive adenosine A1 receptor activation maintains rabbit myocardium in a preconditioned state // Ibid. – 1998. – Vol. 31. – P. 1142–1149.
14. Del Valle H. F., Lascano E. C., Negroni J. A., Crottogini A. J. Absence of ischemic preconditioning protection in diabetic sheep hearts: role of sarcolemmal KATP channel dysfunction // Mol. Cell. Biochem. – 2003. – Vol. 249. – P. 21–30.
15. Dickson E. W., Lorbar M., Porcaro W. A. et al. Rabbit heart can be ≪preconditioned≫ via transfer of coronary effluent // Amer. J. Physiol. – 1999. – Vol. 277. – P. 2451–2457.
16. Dickson E. W., Porcaro W. A., Fenton R. A. et al. ≪Preconditioning at a distance≫ in the isolated rabbit heart // Acad. Emerg. Med. – 2000. – Vol. 7. – P. 311–317.
17. Doorey A. J., Mehmel H. C., Schwarz F. X., Kubler W. Amelioration by nitroglycerin of left ventricular ischemia induced by percutaneous transluminal coronary angioplasty: assessment by hemodynamic variables and left ventriculography // J. Amer. Coll. Cardiol. – 1985. – Vol. 6. – P. 267–274.
18. Downey J. M., Cohen M. V. Reducing infarct size in the setting of acute myocardial infarction // Prog. Cardiovasc. Dis. – 2006. – Vol. 48. – P. 363–371.
19. Ebrahim Z., Baxter G. F., Yellon D. M. Omapatrilat limits infarct size and lowers the threshold for induction of myocardial preconditioning through a bradykinin receptor-mediated mechanism // Cardiovasc. Drugs Ther. – 2004. – Vol. 18. – P. 127–134.
20. Falck G., Schjott J., Jynge P. Hyperosmotic pretreatment reduces infarct size in the rat heart // Physiol. Res. – 1999. – Vol. 48. – P. 331–340.
21. Fryer R. M., Auchampach J. A., Gross G. J. Therapeutic receptor targets of ischemic preconditioning // Cardiovasc. Res. – 2002. – Vol. 55. – P. 520–525.
22. Galagudza M., Kurapeev D., Minasian S. et al. Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm // Eur. J. Cardiothorac. Surg. – 2004. – Vol. 25. – P. 1006–1010.
23. Galagudza M., Vaage J., Valen G. Isoflurane and other commonly used anesthetics do not protect the isolated buffer perfused mouse heart from ischemia- reperfusion injury // Clin. Exp. Pharmacol. Physiol. – 2006. – Vol. 33. – P. 315–319.
24. Garcia C., Julier K., Bestmann L. et al. Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery // Brit. J. Anesth. – 2005. – Vol. 94. – P. 159–165.
25. Garlid K. D., Paucek P., Yarov-Yarovoy V. et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection // Circ. Res. – 1997. – Vol. 81. – P. 1072–1082.
26. Gho B. C., Schoemaker R. G., van den Doel M. A. et al. Myocardial protection by brief ischemia in noncardiac tissue // Circulation. – 1996. – Vol. 94. – P. 2193–2200.
27. Ghosh S., Standen N. B., Galinianes M. Failure to precondition pathological human myocardium // J. Amer. Coll. Cardiol. – 2001. – Vol. 37. – P. 711–718.
28. Gross E. R., Gross G. J. Ligand triggers of classical preconditioning and postconditioning // Cardiovasc. Res. – 2006. – Vol. 70. – P. 212–221.
29. Gunaydin B., Cakici I., Soncul H. et al. Does remote organ ischemia trigger cardiac preconditioning during coronary artery surgery? // Pharmacol. Res. – 2000. – Vol. 41. – P. 493–496.
30. Hadour G., Ferrera R., Sebbag L. et al. Improved myocardial tolerance to ischemia in the diabetic rabbit // J. Mol. Cell. Cardiol. – 1998. – Vol. 30. – P. 1869–1875.
31. Hanley P. J., Daut J. K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms // Ibid. – 2005. – Vol. 39. – P. 17–50.
32. Hassouna M., Loubani B., Matata A. et al. Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium // Cardiovasc. Res. – 2006. – Vol. 69. – P. 450–458.
33. Hausenloy D. J., Tsang A., Mocanu M. M., Yellon D. M. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion // Amer. J. Physiol. Heart Circ. Physiol. – 2005. – Vol. 288. – P. 971–976.
34. Heusch G. Postconditioning: old wine in a new bottle? // J. Amer. Coll. Cardiol. – 2004. – Vol. 44. – P. 1111–1112. 35. Horimoto H., Gaudette G. R., Saltman A. E., Krukenkamp I. B. The role of nitric oxide, K(+)(ATP) channels, and cGMP in the preconditioning response of the rabbit // J. Surg. Res. – 2000. – Vol. 92. – P. 56–63.
36. Huang C. H., Wang J. S., Chiang S. C. et al. Brief pressure overload of the left ventricle preconditions rabbit myocardium against infarction // Ann. Thorac. Surg. – 2004. – Vol. 78. – P. 628–633.
37. Ishihara M., Sato H., Kawagoe T. et al. Impact of diabetes mellitus on long term survival after acute myocardial infarction in patients with single vessel disease // Heart. – 2001. – Vol. 86. – P. 133–138.
38. Johansen D., Ytrehus K., Baxter G. F. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury. Evidence for a role of KATP channels // Basic Res. Cardiol. – 2006. – Vol. 101. – P. 53–60.
39. Joyeux-Faure M., Ramond A., Beguin P. C. et al. Early pharmacological preconditioning by erythropoietin mediated by inducible NOS and mitochondrial ATP-dependent potassium channels in the rat heart // Fundam. Clin. Pharmacol. – 2006. – Vol. 20. – P. 51–56.
40. Kauf T. L., Velazquez E. J., Crosslin D. R. et al. The cost of acute myocardial infarction in the new millennium: evidence from a multinational registry // Amer. Heart J. – 2006. – Vol. 151. – P. 206–212.
41. Kawamura T., Kadosaki M., Nara N. et al. Nicorandil attenuates NF-kappaB activation, adhesion molecule expression, and cytokine production in patients with coronary artery bypass surgery // Shock. – 2005. – Vol. 24. – P. 103–108.
42. Kerendi F., Kin H., Halkos M. E. et al. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors // Basic Res. Cardiol. – 2005. – Vol. 100. – P. 404–412.
43. Kin H., Zatta A. J., Lofye M. T. et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine // Cardiovasc. Res. – 2005. – Vol. 67. – P. 124–133.
44. Kin H., Zhao Z. Q., Sun H. Y. et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion // Ibid. – 2004. – Vol. 62. – P. 74–85.
45. Kloner R. A., Bolli R., Marban E. et al. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop // Circulation. – 1998. – Vol. 97. – P. 1848–1867.
46. Kolpakova M. E., Vlasov T. D., Petrishchev N. N., Vislobokov A. I. Effect of the He-Ne laser irradiation on resistance of the isolated heart to the ischemic and reperfusion injury // Ross. Fiziol. Zh. Im. I. M. Sechenova. – 2003. – Vol. 89. – P. 1496–1502.
47. Kopecky S. L., Aviles R. J., Bell M. R. et al. A randomized, double-blinded, placebo-controlled, dose-ranging study measuring the effect of an adenosine agonist on infarct size reduction in patients undergoing primary percutaneous transluminal coronary angioplasty: the ADMIRE (AmP579 Delivery for Myocardial Infarction REduction) study // Amer. Heart J. – 2003. – Vol. 146. – P. 146–152.
48. Kukreja R. C., Ockaili R., Salloum F. et al. Cardioprotection with phosphodiesterase-5 inhibition – a novel preconditioning strategy // J. Mol. Cell. Cardiol. – 2004. – Vol. 36. – P. 165–173.
49. Leesar M. A., Stoddard M. F., Dawn B. et al. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty // Circulation. – 2001. – Vol. 103. – P. 2935–2941.
50. Leesar M. A., Stoddard M. F., Xuan Y. T. et al. Nonelectrocardiographic evidence that both ischemic preconditioning and adenosine preconditioning exist in humans // J. Amer. Coll. Cardiol. – 2003. – Vol. 42. – P. 437–445.
51. Levi F., Lucchini F., Negri E., La Vecchia C. Trends in mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world // Heart. – 2002. – Vol. 88. – P. 119–124.
52. Liu Y., Downey J. M. Ischemic preconditioning protects against infarction in rat heart // Amer. J. Physiol. – 1992. – Vol. 263. – P. 1107–1112.
53. Liu Y., Sato T., O’Rourke B., Marban E. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? // Circulation. – 1998. – Vol. 97. – P. 2463–2469.
54. Liu Y., Thornton J. D., Cohen M. V. et al. Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction // Circulation. – 1993. – Vol. 88. – P. 1273–1278.
55. Lochner A., Marais E., Genade S., Moolman J. A. Nitric oxide: a trigger for classic preconditioning? // Amer. J. Physiol. – 2000. – Vol. 279. – P. 2752–2765.
56. Loukogeorgakis S. P., Panagiotidou A. T., Yellon D. M. et al. Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm // Circulation. – 2006. – Vol. 113. – P. 1015–1019.
57. Mentzer R. M., Rahko P. S., Molina-Viamonte V. et al. Safety, tolerance, and efficacy of adenosine as an additive to blood cardioplegia in humans during coronary artery bypass surgery // Amer. J. Cardiol. – 1997. – Vol. 79. – P. 38–43.
58. Miki T., Miura T., Ura N. et al. Captopril potentiates the myocardial infarct size-limiting effect of ischemic preconditioning through bradykinin B2 receptor activation // J. Amer. Coll. Cardiol. – 1996. – Vol. 28. – P. 1616–1622.
59. Murcia A. M., Hennekens C. H., Lamas G. A. et al. Impact of diabetes on mortality in patients with myocardial infarction and left ventricular dysfunction // Arch. Intern. Med. – 2004. – Vol. 164. – P. 2273–2279.
60. Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium // Circulation. – 1986. – Vol. 74. – P. 1124–1136.
61. Nakagawa C., Asayama J., Katamura M. et al. Myocardial stretch induced by increased left ventricular diastolic pressure preconditions isolated perfused hearts of normotensive and spontaneously hypertensive rats // Basic Res. Cardiol. – 1997. – Vol. 92. – P. 410–416.
62. Nakano A., Liu G. S., Heusch G. et al. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning // J. Mol. Cell. Cardiol. – 2000. – Vol. 32. – P. 1159–1167.
63. Nieszner E., Posa I., Kocsis E. et al. Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits // Exp. Clin. Endocrinol. Diabetes. – 2002. – Vol. 110. – P. 212–218.
64. Pantos C., Malliopoulou V., Mourouzis I. et al. Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischemia-reperfusion // J. Endocrinol. – 2003. – Vol. 178. – P. 427–435.
65. Pantos C., Malliopoulou V., Varonos D. D., Cokkinos D. V. Thyroid hormone and phenotypes of cardioprotection // Basic. Res. Cardiol. – 2004. – Vol. 99. – P. 101–120.
66. Paraskevaidis I. A., Iliodromitis E. K., Mavrogeni S. et al. Repeated exercise stress testing identifies early and late preconditioning // Int. J. Cardiol. – 2005. – Vol. 98. – P. 221–226.
67. Petrishchev N. N., Vlasov T. D., Galagudza M. M., Makov Y. N. Effect of low-frequency low-intensity ultrasound on contractile function of isolated heart // Bull. Exp. Biol. Med. – 2002. – Vol. 133. – P. 327–329.
68. Petrishchev N. N., Vlasov T. D., Galagudza M. M. et al. Frequency-dependent effects of low-intensity ultrasound on activity of isolated heart // Ibid. – 2003. – Vol. 136. – P. 239–241.
69. Petrishchev N. N., Vlasov T. D., Sipovsky V. G. et al. Does nitric oxide generation contribute to the mechanism of remote ischemic preconditioning? // Pathophysiology. – 2001. – Vol. 7. – P. 271–274.
70. Przyklenk K., Bauer B., Ovize M. et al. Regional ischemic ≪preconditioning≫ protects remote virgin myocardium from subsequent sustained coronary occlusion // Circulation. – 1993. – Vol. 87. – P. 893–899.
71. Przyklenk K., Darling C. E., Dickson E. W., Whittaker P. Cardioprotection ≪outside the box≫ – the evolving paradigm of remote preconditioning // Basic Res. Cardiol. – 2003. – Vol. 98. – P. 149–157.
72. Qin Q., Yang X. M., Cui L. et al. Exogenous NO triggers preconditioning via a cGMP- and mitoKATP- dependent mechanism // Amer. J. Physiol. Heart Circ. Physiol. – 2004. – Vol. 287. – P. 712–718.
73. Radak Z., Sasvari M., Nyakas C. et al. Exercise preconditioning against hydrogen peroxideinduced oxidative damage in proteins of rat myocardium // Arch. Biochem. Biophys. – 2000. – Vol. 376. – P. 248–251.
74. Ravingerova T., Stetka R., Pancza D. et al. Susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic rat heart // Physiol. Res. – 2000. – Vol. 49. – P. 607–616.
75. Rezkalla S. H., Kloner R. A. Ischemic preconditioning for the clinician // World Med. J. – 2006. – Vol. 105. – P. 22–26.
76. Ross S., Foex P. Protective effects of anaesthetics in reversible and irreversible ischemia-reperfusion injury // Brit. J. Anesth. – 1999. – Vol. 82. – P. 622–632.
77. Shojima T., Hayashida N., Nishi A. et al. Effects of nicorandil preconditioning on membrane dystrophin // Eur. J. Cardiothorac. Surg. – 2006. – Vol. 30. – P. 472–479.
78. Solenkova N. V., Solodushko V., Cohen M. V., Downey J. M. Endogenous adenosine protects pre- conditioned heart during early minutes of reperfusion by activating // Amer. J. Physiol. Heart Circ. Physiol. – 2006. – Vol. 290. – P. 441–449.
79. Song Q. J., Li Y. J., Deng H. W. Early and delayed cardioprotection by heat stress is mediated by calcitonin gene-related peptide // Naunyn Schmiedebergs Arch. Pharmacol. – 1999. – Vol. 359. – P. 477–483.
80. Staat P., Rioufol G., Piot C. et al. Postconditioning the human heart // Circulation. – 2005. – Vol. 112. – P. 2143–2148.
81. Tahepold P., Valen G., Starkopf J. et al. Pretreating rats with hyperoxia attenuates ischemia-reperfusion injury of the heart // Life Sci. – 2001. – Vol. 68. – P. 1629–1640.
82. Tang Z. L., Dai W., Li Y. J., Deng H. W. Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischemia of the small intestine // Naunyn Schmiedebergs Arch. Pharmacol. – 1999. – Vol. 359. – P. 243–247.
83. Teoh L. K., Grant R., Hulf J. A. et al. The effect of preconditioning (ischemic and pharmacological) on myocardial necrosis following coronary artery bypass graft surgery // Cardiovasc. Res. – 2002. – Vol. 53. – P. 175–180.
84. Tsang A., Hausenloy D. J., Mocanu M. M. et al. Preconditioning the diabetic heart: the importance of Akt phosphorylation // Diabetes. – 2005. – Vol. 54. – P. 2360–2364.
85. Tsang A., Hausenloy D. J., Yellon D. M. Myocardial postconditioning: reperfusion injury revisited // Amer. J. Physiol. Heart Circ. Physiol. – 2005. – Vol. 289. – P. 2–7.
86. Tsuchida A., Liu G. S., Mullane K., Downey J. M. Acadesine lowers temporal threshold for the myocardial infarct size limiting effect of preconditioning // Cardiovasс. Res. – 1993. – Vol. 27. – P. 116–120.
87. Tsuchida A., Thompson R., Olsson R. A., Downey J. M. The anti-infarct effect of an adenosine A1-selective agonist is diminished after prolonged infusion as is the cardioprotective effect of ischemic preconditioning in rabbit heart // J. Mol. Cell. Cardiol. – 1994. – Vol. 26. – P. 303–311.
88. Venditti P., Masullo P., Di Meo S., Agnisola C. Effects of prolonged aerobic exercise on myocardial responses to ischemia-reperfusion in the rat // Exp. Physiol. – 2001. – Vol. 86. – P. 341–348.
89. Vinten-Johansen J., Zhao Z. Q., Zatta A. J. et al. Postconditioning-a new link in nature’s armor against myocardial ischemia-reperfusion injury // Basic Res. Cardiol. – 2005. – Vol. 100. – P. 295–310.
90. Vlasov T. D., Makov Y. N., Galagudza M. M. Nonischemic myocardial preconditioning with therapeutic ultrasound // Chin. J. Pathophysiol. – 2006. – Vol. 22. – P. 38–39 (Abstr.).
91. Wasir H., Bhan A., Choudhary S. K. et al. Pretreatment of human myocardium with adenosine // Eur. J. Cardiothorac. Surg. – 2001. – Vol. 19. – P. 41–46.
92. Weinbrenner C., Nelles M., Herzog N. et al. Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-dependent pathway // Cardiovasc. Res. – 2002. – Vol. 55. – P. 590–601.
93. Wu Z. K., Tarkka M. R., Pehkonen E. et al. Beneficial effects of ischemic preconditioning on right ventricular function after coronary artery bypass grafting // Ann. Thorac. Surg. – 2000. – Vol. 70. – P. 551–557.
94. Yang X. M., Philipp S., Downey J. M., Cohen M. V. Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation // Basic Res. Cardiol. – 2005. – Vol. 100. – P. 57–63.
95. Yellon D. M., Alkhulaifi A. M., Pugsley W. B. Preconditioning the human myocardium // Lancet. – 1993. – Vol. 342. – P. 276–277.
96. Zhang L., Parratt J. R., Beastall G. H. et al. Streptozotocin diabetes protects against arrhythmias in rat isolated hearts: role of hypothyroidism // Eur. J. Pharmacol. – 2002. – Vol. 435. – P. 269–276.
97. Zhaо Z. Q., Corvera J. S., Halkos M. E. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning // Amer. J. Physiol. Heart Circ. Physiol. – 2003. – Vol. 285. – P. 579–588.