Фенотип тромбоцитов и инфаркт миокарда
Авторы:
Организация:
1 - ФГБУ «Российский кардиологический научно-производственный комплекс» Министерства здравоохранения РФ; ул. 3-я Черепковская, 15А, Москва, 121552, Российская Федерация; 2 - ГБОУ ВПО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Министерства
здравоохранения РФ;
Для корреспонденции: Сведения доступны для зарегистрированных пользователей.
Тип статьи: ФУНДАМЕНТАЛЬНАЯ КАРДИОЛОГИЯ
Ключевые слова:
Скачать (Download)
Аннотация
Закрытие коронарных артерий вследствие образования окклюзирующего тромба является основной причиной развития острого инфаркта миокарда. Основными компонентами образующегося тромба являются нити фибрина и клетки крови. Установлено, что в начальный период образования тромба его основными клеточными компонентами являются активированные тромбоциты, которые быстро стабилизируются волокнами фибрина со снижением удельной доли тромбоцитов в тромбе с течением времени. Формирование окклюзирующих тромбов сильно зависит от адгезивных свойств тромбоцитов и их быстрой реакции на стимулы, возникающие в пораженной сосудистой стенке. Этот обзор освещает роль мембранного фенотипа тромбоцитов в патофизиологии инфаркта миокарда. При описании фенотипа тромбоцитов мы остановились на количественных и качественных характеристиках поверхностного белкового состава мембран, наиболее важных для участия тромбоцитов в процессах свертывания крови, воспалительных реакциях и процессах заживления тканей после повреждения. Среди этих белков можно выделить гликопротеиновые рецепторы и интегрины (гликопротеин Ib, гликопротеин VI, интегрин αIIbβ3 и т. д.), прокоагулянтные белки (анионные фосфолипиды, факторы свертывания), молекулы клеточной адгезии (фибриноген, фактор Виллебранда, селектины и т. д.), хемокины (SDF-1) и некоторые мембранно-связанные провоспалительные белки (мСРБ). В заключение мы представим несколько новых клинических исследований, в которых рассматривается прогностическая ценность некоторых мембранно-связанных белков при острых коронарных синдромах для выявления пациентов с высоким риском развития коронарных событий.Литература
1. Italiano J.E. Jr, Shivdasan R.A. Megakaryocytes and beyond: the birth of platelets. J. Thromb. Haemost. 2003; 1 (6): 1174–82.2. Clemetson K.J., Clemetson J.M. Platelet receptors. In: Michelson A.D. (ed). Platelets. Third ed. San Diego: Elsevier Academic Press; 2013; 169–94.
3. Massberg S., Konrad I., Bultmann A., Schulz C., Munch G. et al. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J. 2004; 18 (2): 397–9.
4. Lindemann S., Kraemer B., Daub K., Stellos K., Gawaz M. Molecular pathways used by platelets to initiate and accelerate atherogenesis. Curr. Opin. Lipidol. 2007; 18: 566–73.
5. Hemker H.C., van Rijn J.L., Rosing J., van Dieijen G., Bevers E.M., Zwaal R.F. Platelet membrane involvement in blood coagulation. Blood Cells. 1983; 9 (2): 303–17.
6. Gawaz M., Langer, H., May, A. E. Platelets in inflammation and atherogenesis. J. Clin. Invest. 2005; 115 (12): 3378–84.
7. Lievens D., von Hundelshausen P. Platelets in atherosclerosis. Thromb. Haemost. 2011; 106 (5): 827–38.
8. Labelle M., Begum S., Hynes R.O. Direct signaling between platelets and cancer cells induces an epithelial- mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011; 20 (5): 576–590.
9. Gupalo E., Kuk C., Qadura M., Buriachkovskaia L., Othman M. Platelet-adenovirus vs. inert particles interaction: Effect on aggregation and the role of platelet membrane receptors. Platelets. 2013; 24 (5): 383–91.
10. Satoh K., Yatomi Y., Osada T., Takeda S., Tsuyuguchi N., Kubota F., Ozaki Y. Clear visual detection of circulating platelet aggregates in acute myocardial infarction using a flow cytometer equipped with an imaging device. Platelets. 2004; 15 (1): 61–2.
11. Bernardo A., Ball C., Nolasco L., Choi H., Moake J.L., Dong J.F. Platelets adhered to endothelial cell-bound ultra-large Von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J. Thromb. Haemost. 2005; 3 (3); 562–70.
12. Gabbasov Z.A., Agapov A.A., Saburova O.S., Komlev A.E., Soboleva E.L., Akchurin R.S. et al. Circulating stromal osteonectin-positive progenitor cells and stenotic coronary atherosclerosis. Canad. J. Physiol. Pharmacol. 2007; 85 (3-4): 295–300.
13. Nijm J., Wikby A., Tompa A., Olsson, A. G., Jonasson L. Circulating Levels of Proinflammatory Cytokines and Neutrophil-Platelet Aggregates in Patients With Coronary Artery Disease. Am. J. Cardiol. 2005; 95 (4): 452–6.
14. Furman M.I., Barnard M.R., Krueger L.A., Fox M.L., Shilale E.A., Lessard D.M. et al. Circulating Monocyte- Platelet Aggregates Are an Early Marker of Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2001; 38 (4): 1002–6.
15. Jiang S., Walker L., Afentoulis M., Anderson D.A., Jauron-Mills L., Corless C.L. Fleming W.H. Transplanted human bone marrow contributes to vascular endothelium. Proc. Natl. Acad. Sci. USA. 2004; 101 (48): 16891–6.
16. Lapidot T., Petit I. Current understanding of stemcell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 2002;30 (9): 973–81.
17. Massberg S., Konrad I., Schurzinger K., Lorenz M., Schneider S., Zohlnhoefer D. et al. Platelets secrete stromal cell–derived factor 1 and recruit bone marrow– derived progenitor cells to arterial thrombi in vivo. J. Exp. Med. 2006; 203 (5): 1221–33.
18. Langer H., May A.E., Daub K. et al. Adherent Platelets Recruit and Induce Differentiation of Murine Embryonic Endothelial Progenitor Cells to Mature Endothelial Cells In Vitro. Circ. Res. 2006; 98 (2): e2–10.
19. Daub K., Langer H., Seizer P., Stellos K., May A.E. et al. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB. J. 2006; 20 (14): 2559–61.
20. Stellos K., Bigalke B., Langer H., Geisler T. et al. Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. Eur. Heart. J. 2009; 30 (5): 584–93.
21. Denis M.M., Tolley N.D., Bunting M., Schwertz H., Jiang H., Lindemann S. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005; 122 (3): 379–91.
22. Thon J.N., Devine D.V. Translation of glycoprotein IIIa in stored blood platelets. Transfusion. 2007; 47 (12): 2260–70.
23. Weyrich A.S., Schwertz H., Kraiss L.W., Zimmerman G.A. Protein synthesis by platelets: historical and new perspectives. J. Thromb. Haemost. 2009; 7 (2): 241–6.
24. Nieswandt B., Brakebusch C., Bergmeier W., Schulte V., Bouvard D. et al. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J. 2001; 20 (9): 2120–30.
25. Chen H., Locke D., Liu Y., Liu C., Kahn M.L. The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion. J. Biol. Chem. 2002; 277 (4): 3011–9.
26. Dumont B., Lasne D., Rothschild C., Bouabdelli M., Ollivier V. et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood. 2009; 114 (9): 1900–3.
27. Jung S.M., Moroi M. Platelet glycoprotein VI. Adv. Exp. Med. Biol. 2008; 640: 53–63.
28. Maynard D.M., Heijnen H.F., Horne M.K., White J.G., Gahl W.A. Proteomic analysis of platelet alphagranules using mass-spectrometry. J. Thromb. Haemost. 2007; 5 (9): 1945–55.
29. Berger G., Caen J.P., Berndt M.C., Cramer E.M. Ultrastructural demonstration of CD36 in the alpha- granule membrane of human platelets and megakaryocytes. Blood. 1993; 82 (10): 3034–44.
30. Suzuki H., Murasaki K., Kodama K., Takayama H. Intracellular localization of glycoprotein VI in human platelets and its surface expression upon activation. Br. J. Haematol. 2003; 121 (6): 904–12.
31. Owens III A.P., Mackman N. Microparticles in hemostasis and thrombosis. Circ. Res. 2011; 108 (10): 1284–97.
32. Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis. Circ. Res. 2012; 110 (2): 356–69.
33. Rauch U., Bonderman D., Bohrmann B., Badimon J.J., Himber J., Riederer M.A., Nemerson Y. Transfer of tissue factor from leukocytes is mediated by CD15 and tissue factor. Blood. 2000; 96 (1): 170–5.
34. Del Conde I., Shrimpton C.N., Thiagarajan P., Lopez J.A. Tissue-factor-dearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005; 106 (5): 1604–11.
35. Pluskota E., Woody N.M., Szpak D., Ballentyne C.M., Soloviev D.A. et al. Expression, activation, and function of integrin бMâ2 (Mac-1) on neutrophil-derived microparticles. Blood. 2008; 112 (6): 2327–35.
36. Dormann D., Kardoeus J., Zimmermann R.E. et al. Flowcytometric analysis of agonist-induced annexin V, factor Va and factor Xa binding to human platelets. Platelets. 1998; 9 (3-4): 171–7.
37. Sims P.J., Wiedmer T., Esmon C.T., Weiss H.J., Shattil S.J. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J. Biol. Chem. 1989; 264 (29): 17049–57.
38. Silvain J., Collet J.P., Nagaswami C., Beygui F., Edmondson K.E. et al. Composition of coronary thrombus in acute myocardial infarction. J. Am. Coll. Cardiol. 2011; 57 (12): 1359–67.
39. Abu el-Makrem M.A., Mahmoud Y.Z., Sayed D., Nassef N.M., Abd el-Kader S.S. et al. The role of platelets CD40 ligand (CD154) in acute coronary syndromes. Thromb. Res. 2009; 124 (6): 683–8.
40. Shand R.A., Butler K.D., Davies J.A., Menys V.C., Wallis R.B. The kinetics of platelet and fibrin deposition on to damaged rabbit carotid arteries in vivo: involvement of platelets in the initial deposition of fibrin. Thromb. Res. 1987; 45 (5): 505–15.
41. Balasubramanian V., Grabowski E., Bini A., Nemerson Y. Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: real-time fluorescence images of thrombus formation and propagation under defined flow conditions. Blood. 2002; 100 (8): 2787–92.
42. Ruggeri Z.M. Platelets in atherothrombosis. Nat. Med. 2002; 8 (11): 1227–34.
43. Savage B., Saldivar E., Ruggeri Z.M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 1996; 84 (2): 289–97.
44. Massberg S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med. 2002; 196 (7): 887–96.
45. Sirotkina O.V., Khaspekova S.G., Zabotina A.M., Shimanova Y.V., Mazurov A.V. Effects of platelet glycoprotein IIb-IIIa number and glycoprotein IIIa Leu33Pro polymorphism on platelet aggregation and sensitivity to glycoprotein IIb-IIIa antagonists. Platelets. 2007; 18 (7): 506–14.
46. Baker R.I., Eikelboom J., Lofthouse E., Staples N., Afshar-Kharghan V., Lopez J.A. et al. Platelet glycoprotein Ibalpha Kozak polymorphism is associated with an increased risk of ischemic stroke. Blood. 2001; 98 (1): 36–40.
47. Joutsi-Korhonen L., Smethurst P.A., Rankin A., Gray E., Jsseldijk M., Onley C.M. et al. The low-frequency allele of the platelet collagen signaling receptor glycoprotein VI is associated with reduced functional responses and expression. Blood. 2003; 101 (11): 4372–9.
48. Huang T., Sahud M.A. Association of C807T, Pl (A) and –5C/T Kozak genotypes with density of glycoprotein receptors on platelet surface. Thromb. Res. 2003; 112 (3): 147–50.
49. O’Halloran A.M., Curtin R., O’Connar F., Dooley M., Fitzgerald A., O’Brian J.K. et al. The impact of genetic variation in the region of the GPIIIa gene on PlA2 expression bias and GPIIb-IIIa receptor density in platelets. Br. J. Haematol. 2006; 132 (4): 494–502.
50. Furihata K., Clemetson K.J., Deguchi H., Kunicki T.J. Variation in human platelet glycoprotein VI content modulates glycoprotein VI-specific prothrombinase activity. Artherioscler. Thromb. Vasc. Biol. 2001; 21 (11): 1857–63.
51. Khaspekova S.G., Zyuryaev I.T., Yakushkin V.V., Sirotkina O.V., Zaytseva N.O. et al. Relationships of glycoproteins IIb-IIIa and Ib content with mean platelet volume and their genetic polymorphisms. Blood Coagul. Fibrinolysis. 2014; 25 (2): 128–34.
52. Bigalke B. et al. Expression of platelet collagen receptor glycoprotein VI is associated with acute coronary syndrome. Eur. Heart J. 2006; 27 (18): 2165–9.
53. Bultmann A. et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis – a possible role of fibronectin. J. Mol. Cell. Cardiol. 2010; 49 (3): 532–42.
54. Morel O., Pereira B., Averous G. et al. Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. Atherosclerosis. 2009; 204 (2): 636–41.
55. Palmerini T., Tomasi L., Barozzi C., Della Riva D. et al. Detection of tissue factor antigen and coagulation activity in coronary artery thrombi isolated from patients with ST-segment elevation acute myocardial infarction. PLoS One. 2013; 8 (12): e81501.
56. Mallat Z., Benamer H., Hugel B., Benessiano J. et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation. 2000; 101 (8): 841–3.
57. Gabbasov Z., Ivanova O., Kogan-Yasny V., Ryzhkova E. et al. Activated platelet chemiluminescence and presence of CD45+ platelets in patients with acute myocardial infarction. Platelets. 2013; Oct 8.
58. Wu Y., Wang H.W., Ji S.R., Sui S.F. Two-dimensional crystallization of rabbit C-reactive protein monomeric subunits. Acta Crystallogr. D. Biol. Crystallogr. 2003; 59 (Pt 5): 922–6.
59. Eisenhardt S.U., Habersberger J., Peter K. Monomeric C-reactive protein generation on activated platelets: the missing link between inflammation and atherothrombotic risk. Trends Cardiovasc. Med. 2009; 19 (7): 232–7.
60. Molins B., Peña E., de la Torre R., Badimon L. Monomeric C-reactive protein is prothrombotic and dissociates from circulating pentameric Creactive protein on adhered activated platelets under flow. Cardiovasc Res. 2011; 92 (2): 328-37.
61. Habersberger J., Strang F., Scheichl A., Htun N., Bassler N., Merivirta R.M. et al. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovasc. Res. 2012; 96 (1): 64–72.
62. Zernecke A., Schober A., Bot I. et al. SDF-1alpha/ CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ. Res. 2005; 96 (7): 784–91.
63. Stellos K., Bigalke B., Langer H. et al. Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. Eur. Heart J. 2009; 30 (5): 584–93.
64. Aradi D., Sibbing D., Bonello L. Current evidence for monitoring platelet reactivity in acute coronary syndrome: a plea for individualized antiplatelet treatment. Int. J. Cardiol. 2013; 167 (5): 1794–7.
65. Franchi F., Rollini F., Cho J.R., Ferrante E., Angiolillo D.J. Platelet function testing in contemporary clinical and interventional practice. Curr. Treat. Options Cardiovasc. Med. 2014. 16 (5): 300.
66. Tantry U.S., Bonello L., Aradi D. et al. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J. Am. Coll. Cardiol. 2013; 62 (24): 2261–73.
67. Bigalke B., Geisler T., Stellos K., Langer H., Daub K. et al. Platelet collagen receptor glycoprotein VI as a possible novel indicator for the acute coronary syndrome. Am. Heart J. 2008; 156 (1): 193–200.
68. Bigalke B., Haap M., Stellos K., Geisler T., Seizer P. et al. Platelet glycoprotein VI (GPVI) for early identification of acute coronary syndrome in patients with chest pain. Thromb Res. 2010; 125 (5): e184–9.
69. Bigalke B., Stellos K., Geisler T., Lindemann S., May A.E., Gawaz M. Glycoprotein VI as a prognostic biomarker for cardiovascular death in patients with symptomatic coronary artery disease. Clin. Res. Cardiol. 2010; 99 (4): 227–33.
70. Wurster T., Stellos K., Haap M., Seizer P. et al. Platelet expression of stromal-cell-derived factor-1 (SDF-1): an indicator for ACS? Int. J. Cardiol. 2013; 164 (1): 111–5.