Ожирение и COVID-19 – двойной удар по сердцу
Авторы:
Организация:
ФГБУ «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» Минздрава России, Москва, Российская Федерация
Для корреспонденции: Сведения доступны для зарегистрированных пользователей.
Тип статьи: Обзоры литературы
DOI:
УДК: 616.17+[616-056.52:616.98]
Для цитирования: Лифанова Л.С., Громова О.И. Ожирение и COVID-19 – двойной удар по сердцу. Креативная кардиология. 2022; 16 (3): 289–301. DOI: 10.24022/1997-3187-2022-16-3-289-301
Поступила / Принята к печати: 28.07.2022 / 05.09.2022
Ключевые слова:
Скачать (Download)
Аннотация
Ожирение – один из основных факторов риска тяжелого течения COVID-19. SARS-CoV-2, вызывая эндотелиит, запускает каскад реакций, в результате которых формируются протромботический и провоспалительный статусы. Кроме того, висцеральная жировая ткань, будучи источником различных протромбогенных и провоспалительных цитокинов, усугубляет данное состояние, ухудшая прогноз и выживаемость больных COVID-19. Синергия пандемий COVID-19 и ожирения наносит двойной удар по здоровью человека, что особенно касается лиц молодого возраста. Изменение образа жизни, приводящее к снижению массы тела, и своевременная вакцинация служат эффективными методами профилактики тяжелого течения COVID-19. В данном обзоре мы представляем основные патогенетические механизмы развития и прогрессирования сердечно-сосудистых заболеваний на фоне COVID-19 у пациентов с ожирением, а также возможные меры для предотвращения неблагоприятных исходов в данной группе больных.Литература
- Карта COVID-19 онлайн в России и мире [The online map of the COVID-19 in Russia and in the world] https://koronavirus-karta.online/#koronavirus-v-mire-dannye-na-segodnya (дата обращения 28.08.2022).
- Stefan N., Birkenfeld A.L., Schulze M.B. Global pandemics interconnected – obesity, impaired metabolic health and COVID-19. Nature Reviews. Endocrinology. 2021. DOI: 10.1038/s41574-020- 00462-1
- Stefan N., Birkenfeld A.L., Schulze M.B., Ludwig D.S. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020; 16: 341–2. DOI: 10.1038/s41574-020-0364-6
- Ritchie H., Roser M. What share of adults are obese? Our World in Data. https://ourworldindata.org/obesity (accessed July 25, 2022).
- Ritchie H. Coronavirus pandemic (COVID-19). Our World In Data. https://ourworldindata.org/coronavirus (accessed August 3, 2022)
- Kass D.A., Duggal P., Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet. 2020; 395: 1544–5. DOI: 10.1016/S0140- 6736(20)31024-2
- Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A. et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020; 28: 1195–9. DOI: 10.1002/oby.22831
- Gao F., Zheng K.I., Xiao-Bo Wang, Qing-Feng Sun, Ke-Hua Pan, Ting-Yao Wang et al. Obesity is a risk factor for greater COVID-19 severity. Diabetes Care. 2020; 43: 72–4. DOI: 10.2337/dc20-0682
- Hamer M., Kivimäki M., Gale C.R., Batty G.D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a communitybased cohort study of 387,109 adults in UK. Brain Behav. Immun. 2020; 87: 184–7. DOI: 10.1016/j.bbi.2020.05.059
- De Cássia Menezes Soares R., Mattos L.R., Raposo L.M. Risk factors for hospitalization and mortality due to COVID-19 in Espírito Santo State, Brazil. Am. J. Trop. Med. Hyg. 2020; 103: 1184–90. DOI: 10.4269/ajtmh.20-0483
- Petrilli Ch.M., Jones S.A., Yang J., Rajagopalan H., O'Donnell L., Chernyak Y. et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. Br. Med. J. 2020; 369: 79–85. DOI: 10.1136/bmj.m1966
- Kim L., Garg Sh., O'Halloran A., Whitaker M., Pham H., Anderson E.A. et al. Risk factors for intensive care unit admission and in- hospital mortality among hospitalized adults identified through the U.S. coronavirus disease 2019 (COVID-19)- Associated Hospitalization Surveillance Network (COVID- NET). Clin. Infect. Dis. 2020; 3: 79–85. DOI: 10.1093/cid/ciaa1012
- Cunningham J.W., Vaduganathan M., Claggett B.L., Jering K.S., Bhatt A.S., Rosenthal N. et al. Clinical outcomes in young US adults hospitalized with COVID-19. JAMA Intern. Med. 2020; 7: 31–3. DOI: 10.1001/jamainternmed.2020.5313
- Williamson E.J., Walker A.J., Bhaskaran K., Bacon S., Bates Ch., Morton C.E. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020; 584: 430–6. DOI: 10.1038/s41586-020-2521-4
- Petersen A., Bressem K., Albrecht J., Thieβ H.M., Vahldiek J., Hamm B. et al. The role of visceral adiposity in the severity of COVID-19: highlights from a unicenter cross-sectional pilot study in Germany. Metabolism. 2020; 110: 154317. DOI: 10.1016/j.metabol.2020.154317
- Yang Yang, Lin Ding, Xianlun Zou, Yaqi Shen, Daoyu Hu, Xuemei Hu et al. Visceral adiposity and high intramuscular fat deposition independently predict critical illness in patients with SARSCOV-2. Obesity. 2020; 28: 2040–8. DOI: 10.1002/oby.22971
- Jun Lan, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan et al. Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581: 215–20. DOI: 10.1038/s41586-020-2180-5
- Jian Shang, Gang Ye, Ke Shi, Yushun Wan, Chuming Luo, Hideki Aihara et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020; 581: 221–4. DOI: 10.1038/s41586-020-2179-y
- Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181: 281–92. DOI: 10.1016/j.cell.2020.02.058
- Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsenet S. al. SARSCoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181: 271–80. DOI: 10.1016/j.cell.2020.02.052
- Sungnak W., Ni Huang, Bécavin Ch., Berg M., Queen R., Litvinukova M. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innateimmune genes. Nat. Med. 2020; 26: 681–7. DOI: 10.1038/s41591-020-0868-6
- Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., Sperhake J.P., Wong M.N., Allweiss L. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 2020; 383: 590–2. DOI: 10.1056/NEJMc 2011400
- Hua Su, Ming Yang, Cheng Wan, Li-Xia Yi, Fang Tang, Hong-Yan Zhu et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020; 98: 219–27. DOI: 10.1016/j.kint.2020.04.003
- Tavazzi G., Pellegrini C., Maurelli M., Belliato M., Sciutti F., Bottazzi A. et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 2020; 22: 911–5. DOI: 10.1002/ejhf.1828
- Fei Xiao, Meiwen Tang, Xiaobin Zheng, Ye Liu, Xiaofeng Li, Hong Shan et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158: 1831–3. DOI: 10.1053/j.gastro.2020.02.055
- Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan Sh., Sehrawat T.S. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020; 26: 1017–32. DOI: 10.1038/s41591-020-0968-3
- Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B. et al. A crucial role of angiotensin convertingenzyme 2 (ACE2) in SARS coronavirus-inducedlung injury. Nature Med. 2005; 11 (8): 875–9. DOI: 10.1038/nm1267. PMID 1600709
- Ying-Ying Zheng, Yi-Tong Ma, Jin-Ying Zhang, Xiang Xie. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020; 8: 14–9. DOI: 10.1038/s41569-020-0360-518
- Blokhin I.O., Lentz S.R. Mechanisms of thrombosis in obesity. Curr. Opin. Hematol. 2013; 20: 437–44. DOI: 10.1097/MOH.0b013e3283634443
- Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 2020; 383: 120–8. DOI: 10.1056/NEJMoa2015432
- Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395: 1417–8. DOI: 10.1016/S0140-6736(20)30937-5
- Ogihara Y., Yachi S., Takeyama M., Nishimoto Y., Tsujino I. et al. Influence of obesity on incidence of thrombosis and disease severity in patients with COVID-19: From the CLOT-COVID study. J. Cardiol. 2022; 29: 340–7. DOI: 10.1016/j.jjcc.2022.08.011
- Lala A., Johnson K.W., Januzzi J.L., Russak A.J., Paranjpe I., Richter F. et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J. Am. Coll. Cardiol. 2020; 76: 533–46. DOI: 10.1016/j.jacc.2020.06.007
- Bonow R.O., Fonarow G.C., O'Gara P.T., Yancy C.W. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. 2020; 5: 751–3. DOI: 10.1001/jamacardio.2020.1105
- Hendren N.S., Drazner M.H., Bozkurt B., Cooper L.T. Jr. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020; 141: 1903–14. DOI: 10.1161/CIRCULATIONAHA.120.047349
- Голухова Е.З., Сливнева И.В., Рыбка М.М., Мамалыга М.Л., Алехин М.Н., Ключников И.В. и др. Легочная гипертензия как фактор оценки риска неблагоприятного исхода у пациентов с COVID-19. Российский кардиологический журнал. 2020; 25 (12): 4136. DOI: 10.15829/1560- 4071-2020-4136 Golukhova E.Z., Slivneva I.V., Rybka M.M., Mamalyga M.L., Alekhin M.N., Klyuchnikov I.V. et al. Pulmonary hypertension as a risk assessment factor for unfavorable outcome in patients with COVID-19. Russian Journal of Cardiology. 2020; 25 (12): 4136 (in Russ.). DOI: 10.15829/1560- 4071-2020-4136
- Barletta J.F., Erstad B.L. Drug dosing in hospitalized obese patients with COVID-19. Critical Care. 2022; 7: 7–10. DOI: 10.1186/s13054-022-03941-1
- Wittermans E., Grutters J.C., Moeniralam H.S., Ocak G., Voorn G.P., Bos W.J., van de Garde E.M.W. Overweight and obesity are not associated with worse clinical outcomes in COVID-19 patients treated with fixed-dose 6 mg dexamethasone. Int. J. Obesity. 2022; 46: 2000–5. DOI: 10.1038/s41366-022-01204-1
- Kuster G.M., Pfister O., Burkard Th., Zhou Q., Twerenbold R., Haaf Ph. et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur. Heart J. 2020; 235: 83–9. DOI: 10.1093/eurheartj/ehaa235
- Временные методические рекомендации по профилактике, диагностике и лечению новой коронавирусной инфекции (COVID-19). Версия 16. МЗ РФ. 18.08.2022 г.
- Almandoz J.P., Xie L., Schellinger J.N., Mathew M.S., Gazda Ch., Ofori A. et al. Impact of COVID-19 stay-athome orders on weight- related behaviours among patients with obesity. Clin. Obes. 2020; 10: 12386. DOI: 10.1111/cob.12386
- Olsen R.H., Krogh-Madsen R., Thomsen C., Booth F.W., Pedersen B.K. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA. 2008; 299: 1261–3. DOI: 10.1001/jama. 299.11.1259
- Leddy A.M., Weiser Sh.D., Palar K., Seligman H. A conceptual model for understanding the rapid COVID-19-related increase in food insecurity and its impact on health and healthcare. Am. J. Clin. Nutr. 2020; 112: 1162–9. DOI: 10.1093/ajcn/nqaa226
- Caldwell A.E., Thomas E.A., Rynders C., Holliman B.D., Perreira C., Ostendorf D.M. et al. Improving lifestyle obesity treatment during the COVID-19 pandemic and beyond: new challenges for weight management. Obes. Sci. Pract. 2022; 8 (1): 32–44. DOI: 10.1002/osp4.540
- Гуляев П.В., Реснянская С.В., Островская И.В. Выявление постковидного синдрома у пациентов, перенесших новую коронавирусную инфекцию. Современные проблемы здравоохранения и медицинской статистики. 2022; 2: 107–28. DOI: 10.24412/2312-2935-2022-2-107-128
- Carfi A., Bernabei R., Landi F. Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020; 324: 603–5. DOI: 10.1001/jama.2020.12603
- Puntmann V.O., Carerj M.L., Wieters I., Fahim M., Arendt Ch., Hoffmann J. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (11): 1265–73. DOI: 10.1001/jamacardio.2020.3557
- Augustin K., Khabbush A., Williams S., Eaton S., Orford M., Cross J.H. et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018; 17: 84–93. DOI: 10.1016/S1474- 4422(17)30408-8
- Barazzoni R., Bischoff S.C., Busetto L., Cederholm T., Chourdakis M. et al. Nutritional management of individuals with obesity and COVID-19: ESPEN expert statements and practical guidance. Clin. Nutr. 2021; 21: 261. DOI: 10.1016/j.clnu. 2021.05.006
- Obesity Management and Treatment During COVID-19. American Academy of Pediatrics. 2021.
- Krist A.H., Davidson K.W., Mangione C.M., Barry M.J., Cabana M., Caughey A.B. US Preventive Services Task Force Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: US preventive services task force recommendation statement. JAMA. 2020; 324: 2069–75. DOI: 10.1001/jama. 2020.21749
- Greenway F.L., Look M., Golden A., Asif I., Nadglowski J., Kyle T., Leider H.L. COVID-19 and the Urgent Need for New Therapies for Obesity. Population Health Management. 2021; 24 (5): 531–4. DOI: 10.1089/pop.2020.0307
- De La Fuente M., De Castro N.M. Obesity as a model of premature immunosenescence. Curr. Immunol. Rev. 2012; 1: 63–75. DOI: 10.2174/157339512798991290
- Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised cont-rolled phase 3 trial in Russia. The Lancet. 2021; 397: 671–81. DOI: 10.1016/s0140- 6736(21)00234-8
- Nogrady B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature. 2021; 595: 339–40. DOI: 10.1038/d41586-021-01813-2
- Статистика вакцинации от коронавируса https://gogov.ru/articles/covid-v-stats (accessed August 21, 2022).