Трехмерная эхокардиографическая модель функциональной митральной недостаточности

Авторы: Сливнева И.В., Сокольская Н.О.

Организация:
ФГБУ «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» (директор – академик РАН и РАМН Л.А. Бокерия) Минздрава России, Рублевское ш., 135, Москва, 121552, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Тип статьи: Обзоры литературы

DOI: https://doi.org/10.24022/1997-3187-2019-13-3-229-240

УДК: 616.126.422-008.64-073.43

Для цитирования:  Сливнева И.В., Сокольская Н.О. Трехмерная эхокардиографическая модель функцио- нальной митральной недостаточности. Креативная кардиология. 2019; 13 (3): 229–40. DOI: 10.24022/1997- 3187-2019-13-3-229-240

Поступила / Принята к печати:  17.07.2019/31.07.2019

Ключевые слова: функциональная митральная недостаточность, трехмерная эхокардиография

Полнотекстовая версия:  

 

Аннотация

Вторичная митральная регургитация является сложным заболеванием, связанным с искажением структур митрального клапана и геометрии левого желудочка в результате ведущей причины. Митральный комплекс представляет собой динамичную структуру c изменением формы и взаимоотношений компонентов клапана на всем протяжении сердечного цикла. Изучение анатомии и движения митрального аппарата необходимо для полного понимания патофизиологии функциональных изменений. В последнее время появилось много информации по оценке вторичной митральной недостаточности, и эхокардиография по-прежнему остается основным неинвазивным методом визуализации клапанной патологии сердца. Успех реконструктивной операции при функциональной митральной недостаточности зависит от анализа механизма развития митральной регургитации, реконструктивного потенциала клапана, корректной оценки количественных характеристик степени недостаточности. Оценка функциональной митральной регургитации является сложной задачей с анализом большого количества параметров. Наибольшей информативностью в отношении механизма вторичной митральной регургитации, структуры и функции митрального клапана при его дисфункции обладает трехмерная эхокардиография, которая позволяет проводить всесторонний, сложный морфофункциональный анализ митрального клапана, а также более достоверную оценку количественных характеристик митральной регургитации по сравнению с двухмерным эхокардиографическим исследованием.

Литература

  1. Lang R.M., Badano L.P., Tsang W., Adams D.H., Agricola E., Buck T. et al. EAE/ASE recommendations for image acquisition and display using threedimensional echocardiography. J. Am. Soc. Echocardiogr. 2012; 25 (1): 3–46. DOI: 10.1016/j.echo.2011.11.010
  2. Fattouch Kh., Lancellotti P., Angelini G.D. (Eds.) Secondary mitral valve regurgitation. Springer London; 2015. DOI: 10.1007/978-1-4471-6488-3
  3. Faletra F.F. Echocardiography in mitral valve disease. Springer-Verlag Italia; 2012. DOI: 10.1007/978-88-470-5435-6
  4. Ormiston J.A., Shah P.M., Tei C., Wong M. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation. 1981; 64 (1): 113–20. DOI: 10.1161/01.cir.64.1.113
  5. Levine R.A., Handschumacher M.D., Sanfilippo A.J., Hagege A.A., Harrigan P., Marshall J.E., Weyman A.E. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989; 80 (3): 589–98. DOI: 10.1161/01.cir.80.3.589
  6. Watanabe N., Ogasawara Y., Yamaura Y., Kawamoto T., Akasaka T., Yoshida K. Geometric deformity of the mitral annulus in patients with ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study. J. Heart Valve Dis. 2005; 14 (4): 447–52.
  7. Ahmad R.M., Gillinov A.M., McCarthy P.M., Blackstone E.H., Apperson-Hansen C., Qin J.X. et al. Annular geometry and motion in human ischemic mitral regurgitation: novel assessment with three-dimensional echocardiography and computer reconstruction. Ann. Thorac. Surg. 2004; 78 (6): 2063–8. DOI: 10.1016/j.athoracsur.2004.06.016
  8. Watanabe N., Ogasawara Y., Yamaura Y., Wada N., Kawamoto T., Toyota E. et al. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation. 2005; 112 (9 Suppl.): I458–62. DOI: 10.1161/CIRCULATIONAHA.104.524595
  9. Daimon M., Gillinov A.M., Liddicoat J.R., Saracino G., Fukuda S., Koyama Y. et al. Dynamic change in mitral annular area and motion during percutaneous mitral annuloplasty for ischemic mitral regurgitation: preliminary animal study with real-time 3-dimensional echocardiography. J. Am. Soc. Echocardiogr. 2007; 20 (4): 381–8. DOI: 10.1016/j.echo.2006.08.029
  10. Flachskampf F., Chandra S., Gaddipatti A., Levine R.A., Weyman A.E., Ameling W. et al. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J. Am. Soc. Echocardiogr. 2000; 13 (4): 277–87. DOI: 10.1067/mje.2000.103878
  11. Chaput M., Handschumacher M.D., Guerrero J.L., Holmvang G., Dal-Bianco J.P., Sullivan S. et al. Mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation. 2009; 120 (11 Suppl.): S99–103. DOI: 10.1161/CIRCULATIONAHA.109.844019
  12. Saito K., Okura H., Watanabe N., Obase K., Tamada T., Koyama T. et al. Influence of chronic tethering of the mitral valve on mitral leaflet size and coaptation in functional mitral regurgitation. JACC Cardiovasc. Imaging. 2012; 5 (4): 337–45. DOI: 10.1016/j.jcmg.2011.10.004
  13. Chen L., McCulloch A., May-Newman K. Nonhomogeneous deformation in the anterior leaflet of the mitral valve. Ann. Biomed. Eng. 2004; 32 (12): 1599–606. DOI: 10.1007/s10439-004-7813-6
  14. Otsuji Y., Kumanohoso T., Yoshifuku S., Matsukida K., Koriyama C., Kisanuki A. et al. Isolated annular dilation does not usually cause important functional mitral regurgitation: comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyopathy. J. Am. Coll. Cardiol. 2002; 39 (10): 1651–6. DOI: 10.1016/s0735-1097(02)01838-7
  15. Lancellotti P., Moura L., Pierard L.A., Agricola E., Popescu B.A., Tribouilloy C. et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur. J. Echocardiogr. 2010; 11 (4): 307–32. DOI: 10.1093/ejechocard/jeq031
  16. Otsuji Y., Hanschumacher M.D., Liel-Cohen N., Tanabe H., Jiang L., Schwammenthal E. et al. Mechanism of ischemic mitral regurgitation with segmental left ventricular dysfunction: threedimensional echocardiographic studies in models of acute and chronic progressive regurgitation. J. Am. Coll. Cardiol. 2001; 37 (2): 641–8. DOI: 10.1016/s0735-1097(00)01134-7
  17. Marsan N.A., Westenberg J.J., Ypenburg C., Delgado V., van Bommel R.J., Roes S.D. et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc. Imaging. 2009; 2 (11): 1245–52. DOI: 10.1016/j.jcmg.2009.07.006
  18. Smith P.K., Puskas J.D., Ascheim D.D., Voisine P., Gelijns A.C., Moskowitz A.J. et al. Surgical treatment of moderate ischemic mitral regurgitation. N. Engl. J. Med. 2014; 371 (23): 2178–88. DOI: 10.1056/NEJMoa1410490
  19. Acker M.A., Daganais F., Goldstein D., Kron I.L., Perrault L.P. Severe ischaemic mitral regurgitation: Repair or replace? J. Thorac. Cardiovasc. Surg. 2015; 150 (6): 1425–7. DOI: 10.1016/j.jtcvs.2015.09.018
  20. Tolis G. Jr., Sundt T.M. 3rd. Surgical strategies for management of mitral regurgitation: recent evidence from randomized controlled trials. Curr. Atheroscler. Rep. 2015; 17 (12): 67. DOI: 10.1007/s11883-015-0549-y
  21. LaPar D.J., Acker M.A., Gelijns A.C., Kron I.L. Repair or replace for severe ischemic mitral regurgitation: prospective randomized multicenter data. Ann. Cardiothorac. Surg. 2015; 4 (5): 411–6. DOI: 10.3978/j.issn.2225-319X.2015.04.11
  22. Vahanian A., Alfieri O., Andreotti F., Antunes M.J., Barón-Esquivias G., Baumgartner H. et al. Guidelines on the management of valvular heart disease (version 2012). Eur. Heart J. 2012; 33 (19): 2451–96. DOI: 10.1093/eurheartj/ehs109
  23. Flynn M., Curtin R., Nowicki E.R., Rajeswaran J., Flamm S.D., Blackstone E.H., Mihaljevic T. Regional wall motion abnormalities and scarring in severe functional ischemic mitral regurgitation: a pilot cardiovascular magnetic resonance imaging study. J. Thorac. Cardiovasc. Surg. 2009; 137 (5): 1063–70. DOI: 10.1016/j.jtcvs.2008.12.023
  24. Kongsaerepong V., Shiota M., Gillinov A.M., Song J.M., Fukuda S., McCarthy P.M. et al. Echocardiographic predictors of successful versus unsuccessful mitral valve repair in ischemic mitral regurgitation. Am. J. Cardiol. 2006; 98 (4): 504–8. DOI: 10.1016/j.amjcard.2006.02.056
  25. Van Garsse L., Gelsomino S., Lucà F., Parise O., Lorusso R., Cheriex E. et al. Left ventricular dyssynchrony is associated with recurrence of ischemic mitral regurgitation after restrictive annuloplasty. Int. J. Cardiol. 2013; 168 (1): 176–84. DOI: 10.1016/j.ijcard.2012.09.098
  26. Ereminiene E., Vaškelytė J., Benetis R., Stoskute N. Ischemic mitral valve repair: predictive significance of restrictive left ventricular diastolic filling. Echocardiography. 2005; 22 (3): 217–24. DOI: 10.1111/j.0742-2822.2005.03108.x
  27. Yosefy C., Hung J., Chua S., Vaturi M., Ton- Nu T.T., Handschumacher M.D., Levine R.A. Direct measurement of vena contracta area by realtime 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am. J. Cardiol. 2009; 104 (7): 978–83. DOI: 10.1016/j.amjcard.2009.05.043
  28. Голухова Е.З., Шанаурина Н.В. Роль изучения проксимальной зоны регургитации в количественной оценке недостаточности митрального клапана. Креативная кардиология. 2007; 1–2: 243–55. / Golukhova E.Z., Shanaurina N.V. The role of the study of the proximal regurgitation zone in the quantitative assessment of mitral valve insufficiency. Creative Cardiology. 2007; 1–2: 243–55 (in Russ.)
  29. Enriquez-Sarano M., Avierinos J.F., Messika- Zeitoun D., Detaint D., Capps M., Nkomo V. et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N. Engl. J. Med. 2005; 352 (9): 875–83. DOI: 10.1056/NEJMoa041451
  30. Rossi A., Dini F.L., Faggiano P., Agricola E., Cicoira M., Frattini S. et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart. 2011; 97 (20): 1675–80. DOI: 10.1136/hrt.2011.225789
  31. Chan K.M. (Ed.) Functional mitral and tricuspid regurgitation. Pathophysiology, assessment and treatment. Springer International Publishing Switzerland; 2017. DOI: 10.1007/978-3-319-43510-7
  32. Zeng X., Levine R.A., Hua L., Morris E.L., Kang Y., Flaherty M. et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ. Cardiovasc. Imaging. 2011; 4 (5): 506–13. DOI: 10.1161/CIRCIMAGING.110.961649
  33. Grigioni F., Enriquez-Sarano M., Zehr K.J., Bailey K.R., Tajik A.J. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001; 103 (13): 1759–64. DOI: 10.1161/01.cir.103.13.1759
  34. Kahlert P., Plicht B., Schenk I.M., Janosi R.A., Erbel R., Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 2008; 21 (8): 912–21. DOI: 10.1016/j.echo.2008.02.003
  35. Song J.M., Kim M.J., Kim Y.J., Kang S.H., Kim J.J., Kang D.H., Song J.K. Three-dimensional characteristics of functional mitral regurgitation in patients with severe left ventricular dysfunction: a real-time three-dimensional color Doppler echocardiography study. Heart. 2008; 94 (5): 590–6. DOI: 10.1136/hrt.2007.119123
  36. Thavendiranathan P., Phelan D., Thomas J., Flamm S.D., Marwick T.H. Quantitative assessment of mitral regurgitation: validation of new methods. J. Am. Coll. Cardiol. 2012; 60 (16): 1470–83. DOI: 10.1016/j.jacc.2012.05.048
  37. Jang J.Y., Kang J.W., Yang D.H., Lee S., Sun B.J., Kim D.H. et al. Impact of a geometric correction for proximal flow constraint on the assessment of mitral regurgitation severity using the proximal flow convergence method. J. Cardiovasc. Ultrasound. 2018; 26 (1): 33–9. DOI: 10.4250/jcu.2018.26.1.33
  38. Matsumura Y., Fukuda S., Tran H., Greenberg N.L., Agler D.A., Wada N. et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am. Heart J. 2008; 155 (2): 231–8. DOI: 10.1016/j.ahj.2007.09.002
  39. Jamil M., Ahmad O., Poh K.K., Yap C.H. Feasibility of ultrasound-based computational fluid dynamics as a mitral valve regurgitation quantification technique: comparison with 2-D and 3-D proximal isovelocity surface area-based methods. Ultrasound Med. Biol. 2017; 43 (7): 1314–30. DOI: 10.1016/j.ultrasmedbio.2017.02.012
  40. Ray S. The echocardiographic assessment of functional mitral regurgitation. Eur. J. Echocardiogr. 2010; 11 (10): i11–7. DOI: 10.1093/ejechocard/jeq121
  41. Buck T., Plicht B. Real-time three-dimensional echocardiographic assessment of severity of mitral regurgitation using proximal isovelocity surface area and vena contracta area method. Lessons we learned and clinical implications. Curr. Cardiovasc. Imaging Rep. 2015; 8 (10): 38. DOI: 10.1007/s12410-015-9356-7
  42. Buck T., Plicht B., Kahlert P., Schenk I.M., Hunold P., Erbel R. Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J. Am. Coll. Cardiol. 2008; 52 (9): 767–78. DOI: 10.1016/j.jacc.2008.05.028
  43. Grady L., Datta S., Kutter O., Duong C., Wein W., Little S.H. et al. Regurgitation quantification using 3D PISA in volume echocardiography. Med. Image Comput. Comput. Assist. Interv. 2011; 14 (Pt. 3): 512–9. DOI: 10.1007/978-3-642-23626-6_63
  44. Thavendiranathan P., Liu S., Datta S., Rajagopalan S., Ryan T., Igo S.R. et al. Quantifiation of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ. Cardiovasc. Imaging. 2013; 6 (1): 125–33. DOI: 10.1161/CIRCIMAGING.112.980383
  45. Zoghbi W.A., Enriquez-Sarano M., Foster E., Grayburn P.A., Kraft C.D., Levine R.A. et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J. Am. Soc. Echocardiogr. 2003; 16 (7): 777–802. DOI: 10.1016/S0894-7317(03)00335-3

Об авторах

  • Сливнева Инесса Викторовна, канд. мед. наук, науч. сотр., врач ультразвуковой диагностики, ORCID;
  • Сокольская Надежда Олеговна, доктор мед. наук, руководитель группы экстренной ультразвуковой и функциональной диагностики, ORCID

Электронная подписка

Для получения доступа к тексту статей журнала воспользуйтесь услугой «Электронная подписка»:

Оформить подписку Подробнее об электронной подписке

Главный редактор

Лео Антонович Бокерия, академик РАН и РАМН

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент



 Если вы заметили опечатку, выделите текст и нажмите alt+A