Natriuretic peptides in modern cardiology

Authors: Margaryan A.K., Tembotova Zh.Kh., Serguladze S.Yu.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2024-18-2-153-163

For citation: Margaryan A.K., Tembotova Zh.Kh., Serguladze S.Yu. Natriuretic peptides in modern cardiology. Creative Cardiology. 2024; 18 (2): 153–163 (in Russ.). DOI: 10.24022/1997-3187-2024-18-2-153-163

Received / Accepted:  14.02.2024 / 29.03.2024

Keywords: natriuretic peptides ANP BNP CNP NT-proBNP MR-proANP acute heart failure chronic heart failure atrial fibrillation



Subscribe 🔒

 

Abstract

Natriuretic peptides (NP) family consists of three main agents: atrial, brain and C-type natriuretic peptides (ANP, BNP and CNP respectively), playing crucial role in cardiovascular system homeostasis and being the most important counterregulatory factors in heart failure (HF) pathophysiology. Molecular genetics, mechanisms of natriuretic, vasodilatory, antihypertrophic, and antifibrotic effects as well as regulation of NP synthesis and secretion are described in this article. According to the recent advances in natriuretic peptides research, BNP, NT-proBNP (N-terminal pro-B- type natriuretic peptide) and MR-proANP (midregional pro-atrial natriuretic peptide) levels allow not only confirmation or ruling out acute or chronic HF, including diastolic disfunction, but also prognostic risk stratification in patients with cardiovascular diseases, assessment of HF drug therapy effectiveness, as well as risk of atrial fibrillation development and thromboembolic events. Special attention is paid to the medications based on NPs and their inhibitors, particularly, to the combination of Valsartan/Sacubitril which is the drug of choice for the management of HF nowadays.

References

  1. Tembotova Zh.Kh., Sekretarev Yu.V. Electrical therapy for chronic heart failure. Annals of Arrythmology. 2019; 16 (2): 103–114 (in Russ.). DOI: 10.15275/annaritmol.2019.2.7
  2. Potter L.R., Yoder A.R., Flora D.R., Antos L.K., Dickey D.M. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 2009; 191: 341–366. DOI: 10.1007/978-3-540-68964-5_15
  3. Oikawa S., Imai M., Ueno A., Tanaka S., Noguchi T., Nakazato H. et al. Cloning and sequence analysis of cDNA encoding a precursor for human atrial natriuretic polypeptide. Nature. 1984; 309 (5970): 724–726. DOI: 10.1038/309724a0
  4. Chan J.C., Knudson O., Wu F., Morser J., Dole W.P., Wu Q. Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc. Natl. Acad. Sci. U S A. 2005; 102 (3): 785–790. DOI: 10.1073/pnas.0407234102
  5. Matsuo A., Nagai-Okatani C., Nishigori M., Kangawa K., Minamino N. Natriuretic peptides in human heart: novel insight into their molecular forms, functions, and diagnostic use. Peptides. 2019; 111: 3-17. DOI: 10.1016/j.peptides.2018.08.006
  6. Hino J., Tateyama H., Minamino N., Kangawa K., Matsuo H. Isolation and identification of human brain natriuretic peptides in cardiac atrium. Biochem. Biophys. Res. Commun. 1990; 167 (2): 693–700. DOI: 10.1016/0006-291x(90)92081-a
  7. Nakamura S., Naruse M., Naruse K., Kawana M., Nishikawa T., Hosoda S. et al. Atrial natriuretic peptide and brain natriuretic peptide coexist in the secretory granules of human cardiac myocytes. Am. J. Hypertens. 1991; 4 (11): 909–1012. DOI: 10.1093/ajh/4.11.909
  8. Nakagawa Y., Nishikimi T. CNP, the third natriuretic peptide: its biology and significance to the cardiovascular system. Biology (Basel). 2022; 11 (7): 986. DOI: 10.3390/biology11070986
  9. Horio T., Tokudome T., Maki T., Yoshihara F., Suga S., Nishikimi T. et al. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology. 2003; 144 (6): 2279–2284. DOI: 10.1210/en.2003-0128
  10. Ogawa T., Vatta M., Bruneau B.G., de Bold A.J. Characterization of natriuretic peptide production by adult heart atria. Am. J. Physiol. 1999; 276 (6): H1977–1986. DOI: 10.1152/ajpheart.1999.276.6.H1977
  11. Edwards B.S., Zimmerman R.S., Schwab T.R., Heublein D.M., Burnett J.C., Jr. Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ. Res. 1988; 62 (2): 191–195. DOI: 10.1161/01. res.62.2.191
  12. McGrath M.F., de Bold A.J. Determinants of natriuretic peptide gene expression. Peptides. 2005; 26 (6): 933–943. DOI: 10.1016/j.peptides.2004.12.022 De Bold A.J., Bruneau B.G., Kuroski M.L. Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovasc. Res. 1996; 31 (1): 7–18.
  13. Yoshizawa A., Yoshikawa T., Nakamura I., Satoh T., Moritani K., Suzuki M. et al. Brain natriuretic peptide response is heterogeneous during beta-blocker therapy for congestive heart failure. J. Card. Fail. 2004; 10 (4): 310–315. DOI: 10.1016/j.cardfail.2003.10.011
  14. Chinkers M., Garbers D.L. The protein kinase domain of the ANP receptor is required for signaling. Science. 1989; 245 (4924): 1392–1394. DOI: 10.1126/science.2571188 Leitman D.C., Agnost V.L., Catalano R.M., Henning S., Waldman S.A., Bennett B.M. et al. Atrial natriuretic peptide, oxytocin, and vasopressin increase guanosine 3′,5′-monophosphate in LLC-PK1 kidney epithelial cells. Endocrinology. 1988; 122 (4): 1478–1485. DOI: 10.1210/endo-122-4-1478
  15. Suga S., Nakao K., Hosoda K., Mukoyama M., Ogawa Y., Shirakami G. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology. 1992; 130 (1): 229–239. DOI: 10.1210/endo.130.1.1309330
  16. Goy M.F., Oliver P.M., Purdy K.E., Knowles J.W., Fox J.E., Mohler P.J. et al. Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide. Biochem. J. 2001; 358 (2): 379–387. DOI: 10.1042/0264-6021:3580379 Tamura N., Ogawa Y., Chusho H., Nakamura K., Nakao K., Suda M. et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc. Natl. Acad. Sci. U S A. 2000; 97 (8): 4239–4244. DOI: 10.1073/pnas.070371497
  17. Corte V.D., Pacinella G., Todaro F., Pecoraro R., Tuttolomondo A. The natriuretic peptide system: a single entity, pleiotropic effects. Int. J. Mol. Sci. 2023; 24 (11): 9642. DOI: 10.3390/ijms24119642
  18. Wang Y., De Waard M.C., Sterner-Kock A., Stepan H., Schultheiss H.P., Duncker D.J., Walther T. Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur. J. Heart Fail. 2007; 9 (6–7): 548–557. DOI: 10.1016/j.ejheart.2007.02.006
  19. Egom E.E.A. Pulmonary arterial hypertension due to NPR-C mutation: a novel paradigm for normal and pathologic remodeling? Int. J. Mol. Sci. 2019; 20 (12): 3063. DOI: 10.3390/ijms20123063
  20. Clerico A., Recchia F.A., Passino C., Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am. J. Physiol. Heart Circ. Physiol. 2006; 290 (1): H17–29. DOI: 10.1152/ajpheart.00684.2005
  21. Songurov R.N., Koksheneva I.V., Ibragimov R.M., Alimov V.P., Tugeeva E.F., Buziashvili Yu.I. Dynamics of heart failure markers NT-proBNP and ST2 in assessing the prospects for myocardial revascularizationin a patient with ischemic left ventricular dysfunction. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2022; 23 (6): 597–605 (in Russ.). DOI: 10.24022/1810-0694-2022-23-6-597-605
  22. McCullough P.A., Nowak R.M., McCord J., Hollander J.E., Herrmann H.C., Steg P.G. et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) multinational study. Circulation. 2002; 106 (4): 416–422. DOI: 10.1161/01.cir.0000025242.79963.4c
  23. Januzzi J.L., Jr., Camargo C.A., Anwaruddin S., Baggish A.L., Chen A.A., Krauser D.G. et al. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study. Am. J. Cardiol. 2005; 95 (8): 948–654. DOI: 10.1016/j.amjcard.2004.12.032
  24. Januzzi J.L., Jr., Chen-Tournoux A.A., Christenson R.H., Doros G., Hollander J.E., Levy P.D. et al. N-Terminal Pro-B-Type Natriuretic Peptide in the Emergency Department: the ICON-RELOADED study. J. Am. Coll. Cardiol. 2018; 71 (11): 1191– 1200. DOI: 10.1016/j.jacc.2018.01.021
  25. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021; 42 (36): 3599–3726. DOI: 10.1093/eurheartj/ehab368
  26. Mueller C., McDonald K., de Boer R.A., Maisel A., Cleland J.G.F., Kozhuharov N. et al. Heart failure association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 2019; 21 (6): 715–731. DOI: 10.1002/ejhf.1494
  27. Pieske B., Tschöpe C., De Boer R.A., Fraser A.G., Anker S.D., Donal E. et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019; 40 (40): 3297–3317. DOI: 10.1093/eurheartj/ehz641
  28. Castiglione V., Aimo A., Vergaro G., Saccaro L., Passino C., Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev. 2022; 27 (2): 625–643. DOI: 10.1007/s10741-021-10105-w
  29. Kociol R.D., Horton J.R., Fonarow G.C., Reyes E.R., Shaw L.K., O’Connor C.M. et al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ. Heart Fail. 2011; 4 (5): 628–636. DOI: 10.1161/CIRCHEARTFAILURE.111.962290
  30. Michtalik H.J., Yeh H.C., Campbell C.Y., Haq N., Park H., Clarke W., Brotman D.J. Acute changes in N-terminal pro-B-type natriuretic peptide during hospitalization and risk of readmission and mortality in patients with heart failure. Am. J. Cardiol. 2011; 107 (8): 1191–1195. DOI: 10.1016/j.amjcard.2010.12.018
  31. Daubert M.A., Adams K., Yow E., Barnhart H.X., Douglas P.S., Rimmer S. et al. NT-proBNP Goal Achievement Is Associated with Significant Reverse Remodeling and Improved Clinical Outcomes in HFrEF. JACC Heart Fail. 2019; 7 (2): 158–168. DOI: 10.1016/j.jchf.2018.10.014
  32. Brunner-La Rocca H.P., Buser P.H., Schindler R., Bernheim A., Rickenbacher P., Pfisterer M. et al. Management of elderly patients with congestive heart failure–design of the Trial of Intensified versus standard Medical therapy in Elderly patients with Congestive Heart Failure (TIME-CHF). Am. Heart J. 2006; 151 (5): 949–955. DOI: 10.1016/j.ahj.2005.10.022
  33. Kerr B., Brandon L. Atrial fibrillation, thromboembolic risk, and the potential role of the natriuretic peptides, a focus on BNP and NT-proBNP – a narrative review. Int. J. Cardiol. Heart Vasc. 2022; 43: 101132. DOI: 10.1016/j.ijcha.2022.101132
  34. Palà E., Alejandro Bustamante A., Clúa-Espuny J.L., Acosta J., Gonzalez-Loyola F., Ballesta-Ors J. et al. N-terminal pro B-type natriuretic peptide’s usefulness for paroxysmal atrial fibrillation detection among populations carrying cardiovascular risk factors. Front. Neurol. 2019; 10: 1226. DOI: 10.3389/fneur.2019.01226
  35. Joglar J.A., Mina M.K., Armbruster A.L., Benjamin E.J., Chyou J.Y., Cronin E.M. et al. 2023 ACC/AHA/ACCP/HRS guideline for the diagnosis and management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation. 2023; DOI: 10.1161/CIR.0000000000001193
  36. Ahmadzadeh K., Hajebi A., Ramawad H.A., Aziz Y., Yousefifard M. Value of N-terminal Pro-brain natriuretic peptide for embolic events risk prediction in patients with atrial fibrillation; a systematic review and meta-analysis. Arch. Acad. Emerg. Med. 2023; 11 (1): e8. DOI: 10.22037/aaem.v11i1.1808
  37. Tsutsui H., Albert N.M., Coats A.J.S., Anker S.D., Bayes-Genis A., Butler J. et al. Natriuretic peptides: role in the diagnosis and management of heart failure: a scientific statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. Eur. J. Heart Fail. 2023; 25 (5): 616–631. DOI: 10.1002/ejhf.2848
  38. Harrison T.G., Shukalek C.B., Hemmelgarn B.R., Zarnke K.B., Ronksley P.E., Iragorri et al. Association of NT-proBNP and BNP with future clinical outcomes in patients with ESKD: a systematic review and meta-analysis. Am. J. Kidney Dis. 2020; 76 (2): 233–247. DOI: 10.1053/j.ajkd.2019.12.017
  39. Goetze J.P., Bruneau B.G., Ramos H.R., Ogawa T., De Bold M.K., de Bold A.J. Cardiac natriuretic peptides. Nat. Rev. Cardiol. 2020; 17 (11): 698–717. DOI: 10.1038/s41569-020-0381-0
  40. O’Connor C.M., Starling R.C., Hernandez A.F., Armstrong P.W., Dickstein K., Hasselblad V. et al. Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 2011; 365 (1): 32–43. DOI: 10.1056/NEJMoa1100171
  41. Chen Y., Schaefer J.S., Iyer S.R., Harders G.E., Pan S., Sangaralingham J. et al. Long-term blood pressure lowering and cGMP-activating actions of the novel ANP analog MANP. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020; 318 (4): R669–R676. DOI: 10.1152/ajpregu.00354.2019

About Authors

  • Anait K. Margaryan, Clinical Resident; ORCID
  • Zhanna Kh. Tembotova, Cand. Med. Sci., Senior Researcher; ORCID
  • Sergey Yu. Serguladze, Dr. Med. Sci., Professor, Head of Department, Cardiovascular Surgeon; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery