The importance of inflammatory response mediators in the mechanisms of atherogenesis and their effect on the results of myocardial revascularization in patients with coronary artery disease

Authors: Iraskhanov A.Sh., Buziashvili Yu.I., Koksheneva I.V., Tugeeva E.F., Timerbulatova T.R.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2023-17-3-330-340

For citation: Iraskhanov A.Sh., Buziashvili Yu.I., Koksheneva I.V., Tugeeva E.F., Timerbulatova T.R. The importance of inflammatory response mediators in the mechanisms of atherogenesis and their effect on the results of myocardial revascularization in patients with coronary artery disease. Creative Cardiology. 2023; 17 (3): 330–40 (in Russ.). DOI: 10.24022/1997-3187-2023-17-3-330-340

Received / Accepted:  25.08.2023 / 28.09.2023

Keywords: сoronary artery bypass grafting coronary artery disease coronary bypass dysfunction thrombosis atherosclerosis systemic inflammation response syndrome systemic inflammation

Download
Full text:  

 

Abstract

Aorto-coronary bypass surgery (CABG) is widely used in clinical practice and is one of the most studied methods of surgical intervention. This type of myocardial revascularization is considered more effective than endovascular interventions. It is known that activation of a systemic inflammatory response leads to the development of cardiovascular complications (nonfatal myocardial infarction, stroke, death). One of the most common complications in the early postoperative period after CABG is the dysfunction of coronary graft (DCG). It is assumed that activation of systemic inflammatory response plays an important role in the development of graft dysfunction both in the early and late postoperative period. The study of the pathophysiological mechanisms underlying the development of cardiovascular complications, as well as the identification of new biomarkers and therapeutic strategies for their prevention are important trends today. This article discusses the role of various markers of inflammation in the development of cardiovascular events.

References

  1. Karpov Yu.A., Kukharchuk V.V., Lyakishev A. Diagnosis and treatment of chronic ischemic heart disease. Practical advice. Cardiological Bulletin. 2015; 3: 3–33 (in Russ.).
  2. Knuuti J., Wijns W., Saraste A. ESC guidelines on the diagnosis and management of chronic coronary syndromes: the task force for diagnosis and management of chronic coronary syndromes of the European society of cardiology (ESC) Eur. Heart J. 2020; 41: 407–77. DOI: 10.1093/eurheartj/ehz425
  3. Sokolova N.Yu., Golukhova E.Z. Myocardial revascularization in patients with stable coronary artery disease: the stratification of perioperative and long-term risks. A.N. Bakoulev Scientific Center for Cardiovascular Surgery of Ministry of Health of the Russian Federation (in Russ.). DOI: 10.15275/kreatkard.2016.01.03
  4. Ţintoiu I.C., Bontaş E., Cristian G., Mocanu I., Călinescu F.B., Kibos A.S. Current risk scores for the establishment of the best myocardial revascularization methods. In: Ţintoiu I., Underwood M., Cook S., Kitabata H., Abbas A. (Eds.) Coronary Graft Failure. Springer; Cham: 2016. DOI: 10.1007/978-3-319-26515-5_10
  5. De Vries M.R., Simons K.H., Jukema J.W., Braun J., Quax P.H. Vein graft failure: from pathophysiology to clinical outcomes. Nat. Rev. Cardiol. 2016; 13 (8): 451–70. DOI: 10.1038/nrcardio.2016.76
  6. Fan F., Ai Y., Sun T., Li S., Liu H., Shi X., Cheng Y. The role of inflammatory cytokines in anemia and gastrointestinal mucosal injury induced by foot electric stimulation. Scientific Reports, 2021; 11 (1): 1–9. DOI: 10.1038/s41598-021-82604-7
  7. Duan H.O., Simpson-Haidaris P.J. Functional analysis of interleukin 6 response elements (IL-6REs) on the human gammafibrinogen promoter: Binding of hepatic Stat3 correlates negatively with transactivation potential of type II IL-6REs. J. Biol. Chem. 2003; 278: 41270–81. DOI: 10.1074/jbc.M304210200
  8. Held C., White H.D., Stewart R.A.H., Budaj A., Cannon C.P., Hochman J.S. et al. Inflammatory biomarkers interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J. Am. Heart Assoc. 2017; 6: e005077. DOI: 10.1161/JAHA.116.005077
  9. Gulielmos Е., Ryan V.H., Trayhurn P., Hunter L., Morris P.J., German A.J. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: Stimulation by lipopolysaccharide and tumor necrosis factor α. Dom. An. Endocrin. 2011; 41 (3): 150–61. DOI: 10.1016/j. domaniend.2011.06.001
  10. Steinberg J.B., Aljure O.D., Fabbro M. Cardiopulmonary bypass and inflammation: the hidden enemy. J. Cardiothorac. Vasc. Anesth. 2019; 33 (2): 346–7. DOI: 10.1053/j.jvca.2018.05.030
  11. Biffl W.L., Pontes A.S. Efeito da L-aminoácido oxidase isolada do veneno da serpente calloselasma rhodostoma na função de neutrófilos humanos (Doctoral dissertation). 2016.
  12. Te Winkel J.P., Drucker N.A., Morocho B.S., Shelley W.C., Markel T.A. Interleukin-6 therapy improves intestinal recovery following ischemia. J. Surg. Res. 2019; 239: 142–8. DOI: 10.1016/j.jss.2019.02.001
  13. Yasuda K., Nakanishi K., Tsutsui H. Interleukin-18 in health and disease. Int. J. Mol. Sci. 2019; 20: 649. DOI: 10.3390/ijms20030649
  14. Mallat Z., Corbaz A., Scoazec A. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation. 2001; 104: 1598–603. DOI: 10.1161/hc3901.096721
  15. Zhang H., Park Y., Wu J., Chen X., Lee S., Yang J. et al. Role of TNF-alpha in vascular dysfunction. Clin. Sci. 2009; 116: 219–30. DOI: 10.1042/CS20080196 16. Zhu M., Lei L., Zhu Z., Li Q., Guo D., Xu J. et al. Excess TNF-alpha in the blood activates monocytes with the potential to directly form cholesteryl ester-laden cells. Acta Biochim. Biophys. Sin. 2015; 47: 899–907. DOI: 10.1093/abbs/gmv092
  16. Schulze C., Conrad N., Schütz A. Reduced expression of systemic proinflammatory cytokines after off-pump versus conventional coronary artery bypass grafting. Thorac. Cardiovasc. Surg. 2000; 48: 364–9. DOI: 10.1055/s-2000-8352
  17. Jongman R.M., Zijlstra J.G., Kok W.F., van Harten A.E., Mariani M.A., Moser J. Off-pump CABG surgery reduces systemic inflammation compared with on-pump surgery but does not change systemic endothelial responses: a prospective randomized study. Shock. 2014; 42 (2): 121–8. DOI: 10.1097/SHK.0000000000000190
  18. Hesse D.G., Shih H.J., Chang C.Y., Chiang M., Le V.L., Hsu H.J., Huang C.J. Simultaneous inhibition of three major cytokines and its therapeutic effects: a peptide-based novel therapy against endotoxemia in mice. J. Personal. Med. 2021; 11 (5): 436. DOI: 10.3390/jpm11050436
  19. Sproston N.R., & Ashworth J.J. Role of C-reactive protein at sites of inflammation and infection. Fron. Immunol. 2018; 9: 754. DOI: 10.3389/fimmu.2018.00754
  20. Li H., Sun K., Zhao R., Hu J., Hao Z., Wang F., Zhang Y. Inflammatory biomarkers of coronary heart disease. Front. Biosci. Sch. 2018; 10 (1): 185–96. DOI: 10.2741/s508
  21. Kosmidou I., Redfors B., Chen S., Crowley A., Lembo N.J., Karmpaliotis D., Stone G.W. C-reactive protein and prognosis after percutaneous coronary intervention and bypass graft surgery for left main coronary artery disease: analysis from the EXCEL trial. Am. Heart J. 2019; 210: 49–57. DOI: 10.1016/j.ahj.2018.12.013
  22. Ridker P.M., Bhatt D.L., Pradhan A.D., Glynn R.J., MacFadyen J.G., Nissen S.E. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet. 2023; 401 (10384): 1293–301. DOI: 10.1016/S0140-6736(23)00215-5
  23. Jia R.F., Li L., Li H., Cao X.J., Ruan Y., Meng S., Jin, Z.N. Meta-analysis of C-reactive protein and risk of angina pectoris. Am. J. Cardiol. 2020; 125 (7): 1039–45. DOI: 10.1016/j. amjcard.2020.01.005
  24. Alzalzalah A. C‐reactive protein as a biomarker of oral health and risk of cardiovascular disease in healthy and CV disease subjects. Baltimore: University of Maryland; 2017. 26. Gupta S., Gupta V.K., Gupta R., Arora S., Gupta V. Relationship of high‐sensitive C‐reactive protein with cardiovascular risk factors, clinical presentation and angiographic profile in patients with acute coronary syndrome: An Indian perspective. Ind. Heart J. 2013; 65 (3): 359–65. DOI: 10.1016/j.ihj.2013.04.035
  25. Chandrashekara S. C‐reactive protein: An inflammatory marker with specific role in physiology, pathology, and diagnosis. Int. J. Rheumatol. Clin. Immunol. 2014; 2 (S1): 105–21. DOI: 10.15305/ijrci/v2iS1/117
  26. Elkind M.S.V., Leon V., Moon Y.P., Paik M.C., Sacco R.L. High‐sensitivity C‐reactive protein and lipoprotein‐associated phospholipase A2 stability before and after stroke and myocardial infarction. Stroke. 2009; 40 (10): 3233–7. DOI: 10.1161/STROKEAHA.109.552802
  27. Christiansen M.K. Early-onset coronary artery disease clinical and hereditary aspects. Dan. Med. J. 2017; 64 (9): pii: B5406.
  28. De Rosa R., Vasa‐Nicotera M., Leistner D.M., Reis S.M., Thome C.E., Boeckel J. Coronary atherosclerotic plaque characteristics and cardiovascular risk factors – Insights from an optical coherence tomography study. Circ. J. 2017; 81: 1165–73. DOI: 10.1253/circj.CJ-17-0054
  29. Zhong Z.X., Li B., Li C.R., Zhang Q.F., Liu Z.D., Zhang P. Role of chemokines in promoting instability of coronary atherosclerotic plaques and the underlying molecular mechanism. Braz. J. Med. Biol. Res. 2015; 48 (2): 161–6. DOI: 10.1590/1414-431X20144195
  30. Heo R.H., Wang M.K., Meyre P.B., Birchenough L., Park L., Vuong K. Associations of inflammatory biomarkers with the risk of morbidity and mortality after cardiac surgery: a systematic review and meta-analysis. Can. J. Cardiol. 2023. DOI: 10.1016/j.cjca.2023.07.021
  31. Ribatti D. The discovery of the placental growth factor and its role in angiogenesis: a historical review. Angiogenesis. 2008; 11 (3): 215–21. DOI: 10.1007/s10456-008-9114-4
  32. Heeschen C., Dimmeler S., Fichtlscherer S., Hamm C.W., Berger J., Simoons M.L., Zeiher A.M. CAPTURE Investigators. Prognostic value of placental growth factor in patients with acute chest pain. J. Am. Med. Assoc. 2004; 291: 435–41. DOI: 10.1001/jama.291.4.435
  33. Bui A.H., Bonaca M.P., Sabatine M.S. Elevated concentration of placental growth factor (PlGF) and long term risk in patients with acute coronary syndrome in the PROVE IT-TIMI 22 trial. J. Thromb. Thrombolys. 2012; 34 (2): 222–8. DOI: 10.1007/s11239-012-0704-z
  34. Zouridakis E., Avanzas P., Arroyo-Espliguero R., Fredericks S., Kaski J.C. Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation. 2004; 110 (13): 1747–53. DOI: 10.1161/01.CIR.0000142664.18739.92
  35. Gupta S., Varol E., Gülcan M., Aylak F., Özaydın, M., Sütçü, R., Erdoğan D. Increased neopterin levels and its association with angiographic variables in patients with slow coronary flow: an observational study. Anatol. J. Cardiol. (Anadol. Kardiyol. Derg.). 2011; 11 (8). DOI: 10.5152/akd.2011.190
  36. Dominguez-Rodriguez A., Abreu-Gonzalez P., GarciaGonzalez M. Usefulness of neopterin levels and left ventricular function for risk assessment in survivors of acute myocardial infarction. Int. J. Cardiol. 2006; 111 (2): 318–20. DOI: 10.1016/j. ijcard.2005.11.024
  37. Krantz D., Goetzl L., Simpson J.L. Association of extreme first-trimester free human chorionic gonadotropin-beta, pregnancyassociated plasma protein-A, and nuchal translucency with intrauterine growth retardation and other adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 2004; 191: 1452–8. DOI: 10.1016/j.ajog.2004.05.068
  38. Lund J., Qin Q.P., Ilva T. Circulating pregnancy-associated plasma protein A predicts outcome in patients with acute coronary syndrome but no troponin I elevation. Circulation. 2003; 108: 1924–6. DOI: 10.1161/01.CIR.0000096054.18485.07
  39. Li C., Zhong X., Xia W., He J., Gan H., Zhao H. The CX3CL1/CX3CR1 axis is upregulated in chronic kidney disease and contributes to angiotensin II-induced migration of vascular smooth muscle cells. Microvasc. Res. 2020; 132: 104037. DOI: 10.1016/j.mvr.2020.104037
  40. Boag S.E. T lymphocytes and fractalkine contribute to myocardial ischema reperfusiom injury in patients. J. Clin. Invest. 2015; 125 (8): 3063. DOI: 10.1172/JCI80055

About Authors

  • Atabi Sh. Iraskhanov, Postgraduate; ORCID
  • Yuriy I. Buziashvili, Dr. Med. Sci., Professor, Academician of the RAS, Head of Department; ORCID
  • Inna.V. Koksheneva, Dr. Med. Sci., Senior Researcher; ORCID
  • Elvina F. Tugeeva, Dr. Med. Sci., Senior Researcher; ORCID
  • Tabarik R. Timerbulatova, Resident Physician; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery