Evaluation of myocardial structural changes in patients with mitral annular disjunction using magnetic resonance imaging

Authors: Aleksandrova S.A., Glazkova E.Yu., Zolotaykina O.S., Berdibekov B.Sh., Dorofeev A.V., Aslanidis I.P.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2023-17-3-386-401

For citation: Aleksandrova S.A., Glazkova E.Yu., Zolotaykina O.C., Berdibekov B.Sh., Dorofeev A.V., Aslanidis I.P., Golukhova E.Z. Assessment of structural left heart abnormalities in mitral annular disjunction patients by magnetic resonance imaging. Creative Cardiology. 2023; 17 (3): 386–401 (in Russ.). DOI: 10.24022/1997-3187-2023-17-3-386-401

Received / Accepted:  23.08.2023 / 12.09.2023

Keywords: disjunction mitral annular disjunction arrhythmic mitral valve prolapse magnetic resonance imaging ventricular arrhythmias

Download
Full text:  

 

Abstract

Objective. Mitral annular disjunction (MAD) is characterized by shifting place of attachment of the posterior leaflet to the left atrium, which manifests in systole as a “separation” of the annulus fibrosus from the basal sections of the left heart (LV). Structural abnormality is often found in patients with mitral valve prolapse (MVP) and may increase the risk of ventricular arrhythmias and sudden cardiac death. Objective – evaluate a complex of changes in the left heart in patients with mitral annular disjunction (MAD) and mitral valve prolapse (MVP) by magnetic resonance imaging (MRI).

Material and methods. A retrospective analysis of cardiac MRI database in patients with cardiac arrhythmias and MVP formed two groups: 24 patients with MAD and MVP (23 women; mean age 34 years) and 29 MVP patients (15 women; 36 years).

Results. The median separation was 7.5 mm (4–10), the length of separation was 4 mm (3-4). A correlation was revealed between the disjunction and the twisting annulus fibrosis (R=0.917, p<0.000), annulus size (R=0.58, p<0.000), magnitude of the anterior and posterior valves prolapse (R=0.586, p<0.000 and R=0.79, p<0.000, respectively), the volume of fibrous (R=0.548, p<0.000). MAD patients are more likely to have bilateral prolapse and posterior flap prolapse (75 vs. 7%; p<0.000 and 75% vs. 17%, p<0.000). They are also have a high prevalence of LV wall dyskinesis at the level of attachment of papillary muscles (96 vs. 35%), GRSmed (36,8 vs. 25%) and fibrous changes in papillary muscles (82% vs. 21%); (all p<0.000).

Conclusion. Mitral annulus disjunction may be part of arrhythmic mitral valve prolapse phenotype and is associated with left heart structural changes and LV remodeling. MRI allows to identify MAD and evaluate it in complex of mitral valve and LV changes, providing accurate diagnostic and prognostic information for risk stratification of life-threatening conditions.

References

  1. Golukhova E.Z., Bakuleva A.A., Mashina T.V., Mrikaev D.V., Kakuchaya T.T. Barlow’s disease: literary reference and clinical observation. Creative Cardiology. 2009; 3 (2): 131–5 (in Russ.).
  2. Bogachev-Prokofiev A.V., Afanasiev A.V., Zhuravleva I.Yu., Demidov D.P., Zheleznev S.I., Malakhova O.Yu. et al. Pathology of the mitral valve in connective tissue dysplasia. Russian Journal of Cardiology. 2016; 1: 81–2 (in Russ.). DOI: 10.15829/1560-4071-2016-11-81-86
  3. Basso С., Iliceto S., Thiene G., Perazzolo Marra M. Mitral valve prolapse, ventricular arrhythmias, and sudden death. Circulation. 2019; 140: 952–64. DOI: 10.1161/CIRCULATIONAHA.118.034075
  4. Sabbag А., Essayagh B., Barrera J., Basso C., Berni A., Cosyns B. et al. EHRA expert consensus statement on arrhythmic mitral valve prolapse and mitral annular disjunction complex in collaboration with the ESC Council on valvular heart disease and the European Association of Cardiovascular Imaging endorsed cby the Heart Rhythm Society, by the Asia Pacific Heart Rhythm Society, and by the Latin American Heart Rhythm Society. Europace. 2022; 24 (12): 1981–2003.
  5. Marra M., Basso C., Lazzari M., Rizzo S., Cipriani A., Giorgi B. et al. Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ. Cardiovasc. Imaging. 2016 (9): 1–10. DOI: 10.1161/circimaging.116.005030
  6. Carmo P., Andrade M.J., Aguiar C., Rodrigues R., Gouveia R., Silva J.A. et al. Mitral annular disjunction in myxomatous mitral valve disease: a relevant abnormality recognizable by transthoracic echocardiography. Cardiovasc. Ultrasound. 2010; 8: 53. DOI: 10.1186/1476-7120-8-53
  7. Kramer C.M., Barkhausen J., Bucciarelli-Ducci C., Flamm S.D., Kim R.J., Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 2020; 22: 17. DOI: 10.1186/s12968-020-00607-1
  8. Dejgaard L.A., Lie Ø.H., Helle-Valle T.M., Edvardsen T., Haugaa K.H. Reply: Arrhythmic Mitral annulus disjunction and mitral valve prolapse: components of the same clinical spectrum? J. Am. Coll. Cardiol. 2019; 73 (6): 739–40. DOI: 10.1016/j. jacc.2018.12.008
  9. Dejgaard L.A., Stokke M.K., Hegbom F., Scheirlynck E.S., Gjertsen E., Andresen K. et al. The mitral annulus disjunction arrhythmic syndrome. J. Am. Coll. Cardiol. 2018; 72 (14): 1600–09. DOI: 10.1016/j.jacc.2018.07.070
  10. Zugwitz D., Fung K., Aung N., Rauseo E., McCracken C., Cooper J. et al. Mitral annular disjunction assessed using CMR imaging: insights from the UK biobank population study. JACC Cardiovasc. Imaging. 2022; 15 (11): 1856–66. DOI: 10.1016/j.jcmg.2022.07.015
  11. Essayagh B., Iacuzio L., Civaia F., Avierinos J.F., Tribouilloy C., Levy F. Usefulness of 3-tesla cardiac magnetic resonance to detect mitral annular disjunction in patients with mitral valve prolapse. Am. J. Cardiol. 2019; 124 (11): 1725–30. DOI: 10.1016/j.amjcard.2019.08.047
  12. Faletra F., Leo L., Paiocchi V., Schlossbauer S., Pavon A., Ho S., Maisano F. Morphology of mitral annular disjunction in mitral valve prolapse. Journal of the American Society of Echocardiography. 2021; 1. DOI: 10.1016/j.echo.2021.09.002
  13. Gilbert B.W., Schatz R.A., VonRamm O.T., Behar V.S., Kisslo J.A. Mitral valve prolapse. Two-dimensional echocardiographic and angiographic correlation. Circulation. 1976; 4 (5): 716–23. DOI: 10.1161/01.cir.54.5.716
  14. Eriksson M.J., Bitkover C.Y., Omran A.S., David T.E., Ivanov J., Ali M.J. et al. Mitral annular disjunction in advanced myxomatous mitral valve disease: echocardiographic detection and surgical correction. J. Am. Soc. Echocardiogr. 2005; (10) 5: 1014–22. DOI: 10.1016/j.echo.2005.06.013
  15. Nishimura R.A., McGoon M.D., Shub C., Miller F.A., Jr., Ilstrup D.M., Tajik A.J. Echocardiographically documented mitral-valve prolapse: long-term follow-up of 237 patients. N. Engl. J. Med. 1985; 313 (21): 1305–9. DOI: 10.1056/NEJM198511213132101
  16. Han H., Calafiore P., Teh A., Farouque O., Lim H. Arrhythmic mitral annulus disjunction and mitral valve prolapse: components of the same clinical spectrum? J. Am. Coll. Cardiol. 2019; 73 (6): 739. DOI: 0.1016/j.jacc.2018.10.090
  17. Essayagh B., Antoine C., Benfari G., Messika-Zeitoun D., Michelena H., Le Tourneau T. et al. Prognostic implications of left atrial enlargement in degenerative mitral regurgitation. J. Am. Coll. Cardiol. 2019; 74 (7): 858–70. DOI: 10.1016/j.jacc.2019.06.032
  18. Komissarova S.M., Krasko O.V., Rineiskaya N.M., Efimova A.A. Prognostic value of global longitudinal deformation and geometry of the left ventricle in patients with non-compact cardiomyopathy. Russian Journal of Cardiology. 2021; 11. https://cyberleninka.ru/article/n/prognosticheskoe-znachenie-globalnoy-prodolnoy-deformatsii-i-geometrii-levogo-zheludochka-u-patsientov-s-nekompaktnoy (accessed May 10, 2023) (in Russ.).
  19. Le Tourneau T., Messika-Zeitoun D., Russo A., Detaint D., Topilsky Y., Mahoney D.W. et al. Impact of left atrial volume on clinical outcome in organic mitral regurgitation. J. Am. Coll. Cardiol. 2010; 56 (7): 570–8. DOI: 10.1016/j.jacc.2010.02.059
  20. Zia M.I., Valenti V., Cherston C., Criscito M., Uretsky S., Wolff S. Relation of mitral valve prolapse to basal left ventricular hypertrophy as determined by cardiac magnetic resonance imaging. Am. J. Cardiol. 2012; 109: 1321–5. DOI: 10.1016/j. amjcard.2011.12.029
  21. Hutchins G.M., Moore G.W., Skoog D.K. The association of floppy mitral valve with disjunction of the mitral annulus fibrosus. N. Engl. J. Med. 1986; 314: 535–40. DOI: 10.1056/NEJM198602273140902
  22. Bui A.H., Roujol S., Foppa M., Kissinger K.V., Goddu B., Hauser T.H. et al. Diffuse myocardial fibrosis in patients with mitral valve prolapse and ventricular arrhythmia. Heart. 2017; 103: 204–9. DOI: 10.1136/heartjnl-2016-309303
  23. Essayagh B., Mantovani F., Benfari G., Maalouf J.F., Mankad S., Thapa P. et al. Mitral annular disjunction of degenerative mitral regurgitation: three-dimensional evaluation and implications for mitral repair. J. Am. Soc. Echocardiogr. 2022; 35 (2): 165–75. DOI: 10.1016/j.echo.2021.09.004
  24. Fukuda S., Song J.K., Mahara K., Kuwaki H., Jang J.Y., Takeuchi M. et al. Basal left ventricular dilatation and reduced contraction in patients with mitral valve prolapse can be secondary to annular dilatation: preoperative and postoperative speckletracking echocardiographic study on left ventricle and mitral valve annulus interaction. Circ. Cardiovasc. Imaging. 2016; 9 (10): e005113. DOI: 10.1161/CIRCIMAGING.115.005113
  25. Kawakami H., Nerlekar N., Haugaa K.H., Edvardsen T., Marwick T.H. Prediction of ventricular arrhythmias with left ventricular mechanical dispersion: a systematic review and metaanalysis. JACC Cardiovasc. Imaging. 2020; 13 (2 Pt. 2): 562–72. DOI: 10.1016/j.jcmg.2019.03.025
  26. Haugaa K.H., Smedsrud M.K., Steen T., Kongsgaard E., Loennechen J.P., Skjaerpe T. et al. Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc. Imaging. 2010; 3 (3): 247–56. DOI: 10.1016/j.jcmg.2009.11.012
  27. Klein A.L., Popović Z.B., Chetrit M. Disparity of dispersion in predicting ventricular arrhythmias. JACC Cardiovasc. Imaging. 2020; 13 (2 Pt. 2): 573–6. DOI: 10.1016/j.jcmg.2019.05.002
  28. Rodríguez-Zanella H., Haugaa K., Boccalini F., Secco E., Edvardsen T., Badano L.P., Muraru D. Physiological determinants of left ventricular mechanical dispersion: a 2-dimensional speckle tracking echocardiographic study in healthy volunteers. JACC Cardiovasc. Imaging. 2018; 11 (4): 650–1. DOI: 10.1016/j. jcmg.2017.06.015
  29. Brainin P. Myocardial postsystolic shortening and early systolic lengthening: current status and future directions. Diagnostics (Basel). 2021; 11 (8): 1428. DOI: 10.3390/diagnostics11081428
  30. Bjerregaard C.L., Skaarup K.G., Lassen M.C.H., BieringSørensen T., Olsen F.J. Strain imaging and ventricular arrhythmia. Diagnostics (Basel). 2023; 13 (10): 1778. DOI: 10.3390/diagnostics13101778
  31. Lee A.P., Jin C.N., Fan Y., Wong R.H.L., Underwood M.J., Wan S. Functional implication of mitral annular disjunction in mitral valve prolapse: a quantitative dynamic 3d echocardiographic study. JACC Cardiovasc. Imaging. 2017; 10 (12): 1424–33. DOI: 10.1016/j.jcmg.2016.11.022
  32. Ring M., Persson H., Mejhert M., Edner M. Post-systolic motion in patients with heart failure – a marker of left ventricular dyssynchrony? Eur. J. Echocardiogr. 2007; 8 (5): 52–9. DOI: 10.1016/j.euje.2006.07.006

About Authors

  • Svetlana A. Aleksandrova, Cand. Med. Sci., Senior Researcher; ORCID
  • Elena Yu. Glazkova, Cand. Med. Sci., Senior Researcher; ORCID
  • Olga S. Zolotaykina, Cand. Med. Sci., Radiologist;
  • Bektur Sh. Berdibekov, Junior Researcher, Cardiologist; ORCID
  • Aleksey V. Dorofeev, Cand. Med. Sci., Head of Department; ORCID
  • Irakliy P. Aslanidis, Dr. Med. Sci., Professor, Deputy Director, Head of Department; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery