Myocardial fibrosis: a defense mechanism or main cause of adverse outcomes?
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Troshin D.S., Averina I.I., Aleksandrova S.A., Marchenko D.S., Donakanyan S.A. Myocardial fibrosis: a defense mechanism or main cause of adverse outcomes? Creative Cardiology. 2023; 17 (4): 464–73 (in Russ.). DOI: 10.24022/1997-3187-2023-17-4-464-473
Received / Accepted: 29.08.2023 / 07.11.2023
Keywords: myocardial fibrosis cardiac fibrosis extracellular matrix diagnosis of myocardial fibrosis treatment of myocardial fibrosis fibrosis biomarkers
Abstract
Myocardial fibrosis is associated with the most cardiovascular diseases. Based on the pathological process, the excessive accumulation of extracellular matrix components may not only serve as a defense mechanism, but also lead to the worsening disease course and heart failure progression, indicating poor prognosis. The basics of physiology and biochemistry of the extracellular matrix, both normally and in various pathological conditions are discussed in this article. Diagnostic issues including non-invasive methods for quantification both focal and diffuse fibrosis as well as potential biomarkers of myocardial fibrosis are described in detail. The use of myocardial fibrosis assessment in early risk stratification in patients with various cardiovascular diseases and a review of meta-analyses on this topic is presented. Thus, therapeutic options aimed to affect extracellular matrix as as well as personalised management strategies, described in the article, appear to be essencial to improve clinical state and outcomes of cardiovascular diseases.References
- Frangogiannis N.G. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol. Aspects Med. 2019; 65: 70–99. DOI: 10.1016/j.mam.2018.07.001
- Karetnikova V.N., Kashtalap V.V., Kosareva S.N., Barbarash O.L. Myocardial fibrosis: current aspects of the problem. Therapeutic Archive. 2017; 89 (1): 88–93 (in Russ.). DOI: 10.17116/terarkh201789188-93
- Berk B.C., Fujiwara K., Lehoux S. ECM remodeling in hypertensive heart disease. J. Clin. Invest. 2007; 117 (3): 568– 75. DOI: 10.1172/JCI31044
- AlQudah M., Hale T.M., Czubryt M.P. Targeting the reninangiotensin-aldosterone system in fibrosis. Matrix Biol. 2020; 91–92: 92–108. DOI: 10.1016/j.matbio.2020.04.005
- Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ. Res. 1993; 73 (3): 413–23. DOI: 10.1161/01.res.73.3.413
- Nuamnaichati N., Sato V.H., Moongkarndi P., ParichatikanondW., Mangmool S. Sustained β-AR stimulation induces synthesis and secretion of growth factors in cardiac myocytes that affect on cardiac fibroblast activation. Life Sci. 2018; 193: 257–69. DOI: 10.1016/j.lfs.2017.10.034
- Hinz B., Phan S.H., Thannickal V.J., Galli A., BochatonPiallat M.L., Gabbiani G. The myofibroblast: one function, multiple origins. Am. J. Pathol. 2007; 170 (6): 1807–16. DOI: 10.2353/ajpath.2007.070112
- Nguyen M.N., Kiriazis H., Gao X.M., Du X.J. Cardiac fibrosis and arrhythmogenesis. Compr. Physiol. 2017; 7 (3): 1009–49. DOI: 10.1002/cphy.c160046
- Frangogiannis N.G. Cardiac fibrosis. Cardiovasc. Res. 2021; 117 (6): 1450–88. DOI: 10.1093/cvr/cvaa324
- Rathod R.H., Powell A.J., Geva T. Myocardial fibrosis in congenital heart disease. Circ. J. 2016; 80 (6): 1300–07. DOI: 10.1253/circj.CJ-16-0353
- Thomas T.P., Grisanti L.A. The dynamic interplay between cardiac inflammation and fibrosis. Front. Physiol. 2020; 11: 529075. DOI: 10.3389/fphys.2020.529075
- Averina I.I., Bockeria O.L., Mironenko M.Yu., Aleksandrova S.A. Development of diastolic dysfunction in patients with acquired heart diseases in the postoperative period. Kardiologiia. 2019; 59 (5): 26–35 (in Russ.). DOI: 10.18087/cardio.2019.5.10256
- Assadi H., Jones R., Swift A.J., Al-Mohammad A., Garg P. Cardiac MRI for the prognostication of heart failure with preserved ejection fraction: A systematic review and metaanalysis. Magn. Reson. Imaging. 2021; 76: 116–22. DOI: 10.1016/j.mri.2020.11.011
- Golukhova E., Bulaeva N., Alexandrova S., Gromova O., Berdibekov B. Prognostic value of characterizing myocardial tissue by cardiac MRI with T1 mapping in HFpEF patients: a systematic review and meta-analysis. J. Clin. Med. 2022; 11 (9): 2531. DOI: 10.3390/jcm11092531
- Disertori M., Rigoni M., Pace N., Casolo G., Masè M., Gonzini L. et al. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta-analysis. JACC Cardiovasc. Imaging. 2016; 9 (9): 1046–55. DOI: 10.1016/j.jcmg.2016.01.033
- Zhuang B., Sirajuddin A., Wang S., Arai A., Zhao S., Lu M. Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: a systematic review and metaanalysis. Heart Fail. Rev. 2018; 23 (5): 723–31. DOI: 10.1007/s10741-018-9718-8
- Chen H., Zeng J., Liu D., Yang Q. Prognostic value of late gadolinium enhancement on CMR in patients with severe aortic valve disease: a systematic review and meta-analysis. Clin. Radiol. 2018; 73 (11): 983.e7–14. DOI: 10.1016/j.crad.2018.07.095
- Balciunaite G., Skorniakov V., Rimkus A., Zaremba T., Palionis D., Valeviciene N. et al. Prevalence and prognostic value of late gadolinium enhancement on CMR in aortic stenosis: meta-analysis. Eur. Radiol. 2020; 30 (1): 640–51. DOI:10.1007/s00330-019-06386-3
- Kong P., Christia P., Frangogiannis N.G. The pathogenesis of cardiac fibrosis. Cell Mol. Life Sci. 2014; 71 (4): 549–74. DOI: 10.1007/s00018-013-1349-6
- Haaf P., Garg P., Messroghli D.R., Broadbent D.A., Greenwood J.P., Plein S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J. Cardiovasc. Magn. Reson. 2016; 18 (1): 89. DOI: 10.1186/s12968-016-0308-4
- Hayashi H., Oda S., Emoto T., Kidoh M., Nagayama Y., Nakaura T. et al. Myocardial extracellular volume quantification by cardiac CT in pulmonary hypertension: comparison with cardiac MRI. Eur. J. Radiol. 2022; 153: 110386. DOI: 10.1016/j.ejrad.2022.110386
- Li L., Zhao Q., Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018; 68–69: 490–506. DOI: 10.1016/j.matbio.2018.01.013
- Briasoulis A., Mallikethi-Reddy S., Palla M., Alesh I., Afonso L. Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart. 2015; 101 (17): 1406–11. DOI: 10.1136/heartjnl-2015-307682
- Weng Z., Yao J., Chan R.H., He J., Yang X., Zhou Y., He Y. Prognostic value of LGE-CMR in HCM: a meta-analysis. JACC Cardiovasc. Imaging. 2016; 9 (12): 1392–402. DOI: 10.1016/j.jcmg.2016.02.031
- Bittencourt M.I., Cader S.A., Araújo D.V., Salles A.L.F., Albuquerque F.N., Spineti P.P.M. et al. Role of myocardial fibrosis in hypertrophic cardiomyopathy: a systematic review and updated meta-analysis of risk markers for sudden death. Arq. Bras. Cardiol. 2019; 112 (3): 281–89. DOI: 10.5935/abc.20190045
- Green J.J., Berger J.S., Kramer C.M., Salerno M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc. Imaging. 2012; 5 (4): 370–77. DOI: 10.1016/j.jcmg.2011.11.021
- He D., Ye M., Zhang L., Jiang B. Prognostic significance of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy. Heart Lung. 2018; 47 (2): 122–6. DOI: 10.1016/j.hrtlng.2017.10.008
- Grigoratos C., Barison A., Ivanov A., Andreini D., AmzulescuM.S., Mazurkiewicz L. et al. Meta-analysis of the prognostic role of late gadolinium enhancement and global systolic impairment in left ventricular noncompaction. JACC Cardiovasc. Imaging. 2019; 12 (11 Pt 1): 2141–51. DOI: 10.1016/j.jcmg.2018.12.029
- Papanastasiou C.A., Kokkinidis D.G., Kampaktsis P.N., Bikakis I., Cunha D.K., Oikonomou E.K. et al. The prognostic role of late gadolinium enhancement in aortic stenosis: a systematic review and meta-analysis. JACC Cardiovasc. Imaging. 2020; 13 (2 Pt 1): 385–92. DOI: 10.1016/j.jcmg.2019.03.029
- Zhang C., Liu J., Qin S. Prognostic value of cardiac magnetic resonance in patients with aortic stenosis: a systematic review and meta-analysis. PLoS One. 2022; 17 (2): e0263378. DOI: 10.1371/journal.pone.0263378
- Golukhova E.Z., Bulaeva N.I., Alexandrova S.A., Mrikaev D.V., Gromova O.I., Ruzina E.V., Berdibekov B.S. The extent of late gadolinium enhancement predicts mortality, sudden death and major adverse cardiovascular events in patients with nonischaemic cardiomyopathy: a systematic review and metaanalysis. Clin. Radiol. 2023; 78 (4): e342–9. DOI: 10.1016/j.crad.2022.12.015
- Yang Z., Xu R., Wang J.R., Xu H.Y., Fu H., Xie L.J. et al. Association of myocardial fibrosis detected by late gadoliniumenhanced MRI with clinical outcomes in patients with diabetes: a systematic review and meta-analysis. BMJ Open. 2022; 12 (1): e055374. DOI: 10.1136/bmjopen-2021-055374
- Coleman G.C., Shaw P.W., Balfour P.C., Jr., Gonzalez J.A., Kramer C.M., Patel A.R., Salerno M. Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis. JACC Cardiovasc. Imaging. 2017; 10 (4): 411–20. DOI: 10.1016/j.jcmg.2016.05.009
- Gyöngyösi M., Winkler J., Ramos I., Do Q.T., Firat H., McDonald K. et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur. J. Heart Fail. 2017; 19 (2): 177–91. DOI: 10.1002/ejhf.696
- Weidemann F., Herrmann S., Störk S., Niemann M., Frantz S., Lange V. et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation. 2009; 120 (7): 577–84. DOI: 10.1161/CIRCULATIONAHA.108.847772
- Wang J., Gong X., Chen H., Qin S., Zhou N., Su Y., Ge J. Effect of cardiac resynchronization therapy on myocardial fibrosis and relevant cytokines in a canine model with experimental heart failure. J. Cardiovasc. Electrophysiol. 2017; 28 (4): 438–45. DOI: 10.1111/jce.13171
- Lok S.I., Nous F.M., van Kuik J., van der Weide P., Winkens B., Kemperman H. et al. Myocardial fibrosis and pro-fibrotic markers in end-stage heart failure patients during continuousflow left ventricular assist device support. Eur. J. Cardiothorac. Surg. 2015; 48 (3): 407–15. DOI: 10.1093/ejcts/ezu539
- Wang H., Ding L., Tian L., Tian Y., Liao L., Zhao J. Empagliflozin reduces diffuse myocardial fibrosis by extracellular volume mapping: a meta-analysis of clinical studies. Front. Endocrinol. 2022; 13: 917761. DOI: 10.3389/fendo.2022.917761
- Brilla C.G., Funck R.C., Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000; 102 (12): 1388–93. DOI: 10.1161/01. cir.102.12.1388
- Shimada Y.J., Passeri J.J., Baggish A.L., O’Callaghan C., Lowry P.A., Yannekis G. et al. Effects of losartan on left ventricular hypertrophy and fibrosis in patients with nonobstructive hypertrophic cardiomyopathy. JACC Heart Fail. 2013; 1 (6): 480–87. DOI: 10.1016/j.jchf.2013.09.001
- Díez J., Querejeta R., López B., González A., Larman M., Martínez Ubago J.L. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002; 105 (21): 2512–17. DOI: 10.1161/01.cir.0000017264.66561.3d
- López B., Querejeta R., Varo N., González A., Larman M., Martínez Ubago J.L. et al. Usefulness of serum carboxyterminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001; 104 (3): 286–91. DOI: 10.1161/01.cir.104.3.286
- Kawamura M., Ito H., Onuki T., Miyoshi F., Watanabe N., Asano T. et al. Candesartan decreases type III procollagenN-peptide levels and inflammatory marker levels and maintains sinus rhythm in patients with atrial fibrillation. J. Cardiovasc. Pharmacol. 2010; 55 (5): 511–17. DOI: 10.1097/FJC.0b013e3181d70690
- Kosmala W., Przewlocka-Kosmala M., Szczepanik-Osadnik H., Mysiak A., O’Moore-Sullivan T., Marwick T.H. A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc. Imaging. 2011; 4 (12): 1239–49. DOI: 10.1016/j.jcmg.2011.08.014
- Kosmala W., Przewlocka-Kosmala M., Szczepanik-Osadnik H., Mysiak A., Marwick T.H. Fibrosis and cardiac function in obesity: a randomised controlled trial of aldosterone blockade. Heart. 2013; 99 (5): 320–26. DOI: 10.1136/heartjnl-2012-303329
- Zannad F., Alla F., Dousset B., Perez A., Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000; 102 (22): 2700–06. DOI: 10.1161/01.cir.102.22.2700
- Ravassa S., Trippel T., Bach D., Bachran D., González A., López B. et al. Biomarker-based phenotyping of myocardial fibrosis identifies patients with heart failure with preserved ejection fraction resistant to the beneficial effects of spironolactone: results from the Aldo-DHF trial. Eur. J. Heart Fail. 2018; 20 (9): 1290–99. DOI: 10.1002/ejhf.1194
- Deswal A., Richardson P., Bozkurt B., Mann D.L. Results of the Randomized Aldosterone Antagonism in Heart Failure with Preserved Ejection Fraction trial (RAAM-PEF). J. Card. Fail. 2011; 17 (8): 634–42. DOI: 10.1016/j.cardfail.2011.04.007
- Iraqi W., Rossignol P., Angioi M., Fay R., Nuée J., Ketelslegers J.M. et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation. 2009; 119 (18): 2471–79. DOI: 10.1161/CIRCULATIONAHA.108.809194
- Abulhul E., McDonald K., Martos R., Phelan D., Spiers J.P., Hennessy M. et al. Long-term statin therapy in patients with systolic heart failure and normal cholesterol: effects on elevated serum markers of collagen turnover, inflammation, and B-type natriuretic peptide. Clin. Ther. 2012; 34 (1): 91–100. DOI: 10.1016/j.clinthera.2011.11.002
- Chang Y.Y., Wu Y.W., Lee J.K., Lin Y.M., Lin Y.T., Kao H.L. et al. Effects of 12 weeks of atorvastatin therapy on myocardial fibrosis and circulating fibrosis biomarkers in statin-naïve patients with hypertension with atherosclerosis. J. Investig. Med. 2016; 64 (7): 1194–99. DOI: 10.1136/jim-2016-000092
- López B., Querejeta R., González A., Sánchez E., Larman M., Díez J. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J. Am. Coll. Cardiol. 2004; 43 (11): 2028–35. DOI: 10.1016/j.jacc.2003.12.052
- López B., González A., Beaumont J., Querejeta R., Larman M., Díez J. Identification of a potential cardiac antifibrotic mechanism of torasemide in patients with chronic heart failure. J. Am. Coll. Cardiol. 2007; 50 (9): 859–67. DOI: 10.1016/j.jacc.2007.04.080
- Giannetta E., Isidori A.M., Galea N., Carbone I., Mandosi E., Vizza C.D. et al. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation. 2012; 125 (19): 2323–33. DOI: 10.1161/CIRCULATIONAHA.111.063412
- Cunningham J.W., Claggett B.L., O’Meara E., Prescott M.F., Pfeffer M.A., Shah S.J. et al. Effect of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients with HFpEF. J. Am. Coll. Cardiol. 2020; 76 (5): 503–14. DOI: 10.1016/j.jacc.2020.05.072
- Ashton E., Windebank E., Skiba M., Reid C., Schneider H., Rosenfeldt F. et al. Why did high-dose rosuvastatin not improve cardiac remodeling in chronic heart failure? Mechanistic insights from the UNIVERSE study. Int. J. Cardiol. 2011; 146 (3): 404–07. DOI: 10.1016/j.ijcard.2009.12.028
About Authors
- Dmitriy S. Troshin, Postgraduate, Cardiologist; ORCID
- Irina I. Averina, Dr. Med. Sci., Professor, Senior Researcher, Cardiologist; ORCID
- Svetlana A. Aleksandrova, Cand. Med. Sci., Senior Researcher, Radiologist; ORCID
- Darya S. Marchenko, Postgraduate, Radiologist; ORCID
- Sergey A. Donakanyan, Dr. Med. Sci., Professor, Cardiovascular Surgeon; ORCID