Spontaneous reperfusion in ST-elevation myocardialinfarction

Authors: Kalinskaya A.I., Uzhakhova Kh.M., Vasilieva E.Yu., Shpektor A.V.

Company: Cardiology Chair, Yevdokimov Moscow State University of Medicine and Dentistry of Ministry of Health of the Russian Federation, ulitsa Delegatskaya, 20/1, Moscow, 127473, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2019-13-2-173-183

For citation: Kalinskaya A.I., Uzhakhova Kh.M., Vasilieva E.Yu., Shpektor A.V. Spontaneous reperfusion in ST-elevation myocardial infarction. Creative Cardiology. 2019; 13 (2): 173–183 (in Russ.). DOI: 10.24022/1997-3187-2019- 13-2-173-183

Received / Accepted:  21.05.2019/27.05.2019

Keywords: spontaneous reperfusion endogenous fibrinolysis endothelial dysfunction myocardial infarction

Download
Full text:  

 

Abstract

Myocardial infarction currently remains one of the leading causes of death and hospitalization. The most common pathogenetic mechanism for the development of acute myocardial infarction is the formation of a thrombus in the arterial lumen due to atherosclerotic plaque rupture. Whether it is going to be total or partial occlusion of the coronary artery depends on the balance between coagulation, anticoagulation and fibrinolytic systems. In patients with ST-segment elevation myocardial infarction full or partial spontaneous restoration of blood flow of the infarct-related artery may occur without thrombolysis or primary coronary intervention. The spontaneous restoration of blood flow in the infarct-related artery improves both the short-term and long-term prognoses of patients with acute myocardial infarction. The process of spontaneous restoration of blood flow in the infarctrelated artery is associated primary with increased activation of the endogenous fibrinolytic system. We present a review of the literature data on the main mechanisms of spontaneous fibrinolysis, role of hemostatic system, endothelial function, as well as its effect on the long-term prognosis of patients with acute myocardial infarction.

References

  1. Brodie B., Stuckey T., Wall T., Kissling G., Hansen C.J., Muncy D.B. et al. Importance of time reperfusion for 30-day and late survival and recovery of left ventricular function after primary angioplasty for acute myocardial infarction. J. Am. Coll. Cardiol. 1998; 32 (5): 1312–9. DOI: 10.1016/s0735-1097(98)00395-7
  2. Husain S.S., Gurewich V., Lipinski B. Purification and partial characterization of a single-chain highmolecular- weight form of urokinase from human urine. Arch. Biochem. Biophys. 1983; 220 (1): 31–8. DOI: 10.1016/0003-9861(83)90383-1
  3. Stone G.W., Cox D., Garcia E., Brodie B.R., Morice M.C., Griffin J. et al. Normal flow (TIMI-3) before mechanical reperfusion therapy is an independent determinant of survival in acute myocardial infarction: analysis from the primary angioplasty in myocardial infarction trials. Circulation. 2001; 104 (6): 636–41. DOI: 10.1161/hc3101.093701
  4. Ernst N., Zijlstra F., de Boer M.J., Dambrink J.H.E., Gosselink A.T.M., Henriques J.P.S. et al. The importance of patency of the infarct-related artery in treatment of patients with acute myocardial infarction. Neth. Heart J. 2003; 11 (1): 11–4.
  5. Litvinov R.I. Molecular mechanisms and clinical significance of fibrinolysis. Kazan Medical Journal. 2013; 94 (5): 711–8 (in Russ.).
  6. Moliterno D.J., Lange R.A., Meidell R.S., Willard J.E., Leffert C.C., Gerard R.D. et al. Relation of plasma lipoprotein(a) to infarct artery patency in survivors of myocardial infarction. Circulation. 1993; 88 (3): 935–40. DOI: 10.1161/01.CIR.88.3.935
  7. Yamamoto J., Inoue N., Otsui K., Ishii H., Gorog D.A. Global Thrombosis Test (GTT) can detect major determinants of haemostasis including platelet reactivity, endogenous fibrinolytic and thrombin generating potential. Thromb. Res. 2014; 133 (5): 919–26. DOI: 10.1016/j.thromres.2014.02.018
  8. Verouden N.J., Haeck J.D., Koch K.T., Henriques J.P., Baan J., van der Schaaf R.J. et al. ST-segment resolution prior to primary percutaneous coronary intervention is a poor indicator of coronary artery patency in patients with acute myocardial infarction. Ann. Noninvasive Electrocardiol. 2010; 15 (2): 107–15. DOI: 10.1111/j.154274X.2010.00350.x
  9. Azab D., Zahran M.E., Elmahmoudy A. Initial T wave morphology in the chest leads in patients presenting with anterior ST-segment elevation myo- cardial infarction and its correlation with spontaneous reperfusion of the left anterior descending coronary artery. Int. J. Cardiovasc. Acad. 2019; 5 (2): 52–7. DOI: 10.4103/IJCA.IJCA_1_19
  10. Van de Werf F., Bax J., Betriu A., Blomstrom- Lundqvist C., Crea F., Falk V. et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur. Heart J. 2008; 29 (23): 2909–45. DOI: 10.1093/eurheartj/ehn416
  11. Bainey K.R., Fu Y., Wagner G.S., Goodman S.G., Ross A., Granger C.B. et al. Spontaneous reperfusion in ST-elevation myocardial infarction: comparison of angiographic and electrocardiographic assessments. Am. Heart J. 2008; 156 (2): 248–55. DOI: 10.1016/j.ahj.2008.03.018
  12. DeWood M.A., Spores J., Notske R., Mouser L.T., Burroughs R., Golden M.S., Lang H.T. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 1980; 303 (16): 897–902. DOI: 10.1056/NEJM198010163031601
  13. Maharjan P., Manandhar R., Xu W., Ma S., Han W., Liu Y. et al. Markers of autolysis in acute ST elevation myocardial infarction – a comparative analysis. J. Nepal Med. Assoc. 2015; 53 (198): 96–103. DOI: 10.31729/jnma.2769
  14. Kim J.W., Seo H.S., Suh S.Y., Choi C.U., Kim E.J., Rha S.W. et al. Relationship between lipoprotein( a) and spontaneous recanalization of infarctrelated arteries in the early phase of acute myocardial infarction. Clin. Cardiol. 2008; 31 (5): 211–6. DOI: 10.1002/clc.20143
  15. Dagdelen S., Eren N., Akdemir I., Karabulut H., Ergelen M., Caglar N. The effect of lipoprotein-a on thrombolytic therapy and spontaneous reperfusion in acute myocardial infarction. A comparative study. Int. Angiol. 2002; 21 (4): 384–9.
  16. Li J., Zhou Y., Zhang Y., Zheng J. Admission homocysteine is an independent predictor of spontaneous reperfusion and early infarct-related artery patency before primary percutaneous coronary intervention in ST-segment elevation myocardial infarction. BMC Cardiovasc. Dis. 2018; 18: 125. DOI: 10.1186/s12872-018-0868-3
  17. Sauls D.L., Wolberg A.S., Hoffman M. Elevated plasma homocysteine leads to alterations in fibrin clot structure and stability: implications for the mechanism of thrombosis in hyperhomocysteinemia. J. Thromb. Haemost. 2003; 1 (2): DOI: 10.1046/j.1538-7836.2003.00053.x
  18. Matetzky S., Freimark D., Ben-Ami S., Goldenberg I., Leor J., Doolman R. et al. Association of elevated homocysteine levels with a higher risk of recurrent coronary events and mortality in patients with acute myocardial infarction. Arch. Intern. Med. 2003; 163 (16): 1933–7. DOI: 10.1001/archinte.163.16.1933
  19. Lehotský J., Tothová B., Kovalská M., Dobrota D., Beňová A., Kalenská D., Kaplán P. Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front. Neurosci. 2016; 10: 538. DOI: 10.3389/fnins.2016.00538
  20. Vasil’eva E.Yu., Kasyanova O.V., Shpektor A.V. The С-reactive protein level and aspirin therapy efficiency in patients with coronary heart disease. Kardiologiia. 2006; 46 (2): 66–7 (in Russ.).
  21. Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 377 (12): 1119–31. DOI: 10.1056/NEJMoa1707914
  22. Vasilieva E.Yu., Ryazankina N.B., Manchurov V.N., Khmara T.N., Skrypnik D.V., Reztsov R.Yu., Shpektor A.V. Impact of remote ischemic preconditioning on endothelial function in patients with acute ST-elevation myocardial infarction. Creative Cardiology. 2014; 8 (3): 24–8 (in Russ.).]
  23. Vasilieva E., Urazovskaya I., Skrypnik D., Shpektor A. Total occlusion of the infarct-related coronary artery correlates with brachial artery flow-mediated dilatation in patients with ST-elevation myocardial infarction. Acute Card. Care. 2009; 11 (3): 155–9. DOI: 10.1080/17482940902763372
  24. Rimar D., Crystal E., Battler A., Gottlieb S., Freimark D., Hod H. Improved prognosis of patients presenting with clinical markers of spontaneous reperfusion during acute myocardial infarction. Heart. 2002; 88 (4): 352–6. DOI: 10.1136/heart. 88.4.352
  25. Hamsten A., Wiman B., de Faire U., Blombäck M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N. Engl. J. Med. 1985; 313 (25): 1557–63. DOI: 10.1056/NEJM198512193132501
  26. . Fefer P., Beigel R., Atar S., Aronson D., Pollak A., Zahger D. et al. Outcomes of patients presenting with clinical indices of spontaneous reperfusion in ST-elevation acute coronary syndrome undergoing deferred angiography. J. Am. Heart Assoc. 2017; 6 (7): e004552. DOI: 10.1161/JAHA.116.004552
  27. Lemkes J.S., Janssens G.N., van de Ven P.M., Marques K.M.J., Nap A. et al. Timing of revascularization in patients with transient ST-segment elevation myocardial infarction: a randomized clinical trial. Eur. Heart J. 2018; 40 (3): 283–91. DOI: 10.1093/eurheartj/ehy651
  28. Wiman B., Andersson T., Hallqvist J., Reuterwall C., Ahlbom A., deFaire U. Plasma levels of tissue plasminogen activator/plasminogen activator inhibitor-1 complex and von Willebrand factor are significant risk markers for recurrent myocardial infarction in the Stockholm Heart Epidemiology Program (SHEEP) study. Arterioscler. Thromb. Vasc. Biol. 2000; 20 (8): 2019–23. DOI: 10.1161/01.atv.20.8.2019
  29. Kalinskaya A.I., Savvinova P.P., Vasilieva E.Yu., Shpektor A.V. The specifics of clotting and endogenic fibrinolysis in acute coronary syndrome patients. Russian Journal of Cardiology. 2018; 9: 12–6 (in Russ.). DOI: 10.15829/1560-4071-2018-9-12-16
  30. Newby D.E., Wright R.A., Dawson P., Ludlam C.A., Boon N.A., Fox K.A., Webb D.J. The L-arginine/ nitric oxide pathway contributes to the acute release of tissue plasminogen activator in vivo in man. Cardiovasc. Res. 1998; 38 (2): 485–92. DOI: 10.1016/s0008-6363(98)00017-0
  31. Kalinskaya A.I., Urazovskaya I.L., Vasilieva E.Yu., Shpektor A.V. Brachial artery flow mediated dilation (FMD) test results predict the efficiency of thrombolytic therapy in patients with ST-elevation myocardial infarction. Creative Cardiology. 2011; 5 (2): 42–5 (in Russ.).

About Authors

  • Anna I. Kalinskaya, Cand. Med. Sc., Associate Professor, ORCID
  • Khyadi M. Uzhakhova, Postgraduate, ORCID
  • Elena Yu.Vasilieva, Dr. Med. Sc., Professor, ORCID
  • Aleksandr V. Shpektor, Dr. Med. Sc., Professor, Chief of Chair, ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery