Determination of the range of reference values of native T1-, T2-relaxation times of myocardial parametric maps in the modification of MOLLY on magnetic resonance imaging 1.5 T

Authors: Marchenko D.S., Aleksandrova S.A., Glazkova E.Yu., Mataeva T.V., Shlyappo M.A., Aslanidis I.P., Dorofeev A.V.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2024-18-1-36-43

For citation: Marchenko D.S., Aleksandrova S.A., Glazkova E.Yu., Mataeva T.V., Shlyappo M.A., Aslanidis I.P., Dorofeev A.V. Determination of the range of reference values of native T1-, T2-relaxation times of myocardial parametric maps in the modification of MOLLY on magnetic resonance imaging 1.5 T. Creative Cardiology. 2024; 18 (1): 36–43 (in Russ.). DOI: 10.24022/1997-3187-2024-18-1-36-43

Received / Accepted:  19.01.2024 / 09.02.2024

Keywords: T1 mapping T2 mapping parametric maps normal T1 and T2 relaxation times



Subscribe 🔒

 

Abstract

Objective. Determine the range of normal values for the T1- and T2-relaxation time of parametric maps on a magnetic resonance imaging (MRI) scanner Magnetom Avanto Fit (Siemens 1.5 T).

Material and methods. A retrospective analysis of 370 patients with a presumptive diagnosis of myocarditis who underwent contrast-enhanced cardiac MRI was performed. The exclusion criteria were the presence in history or during MRI of signs, changes in the myocardium. The studies were carried out on the 1.5 T MRI scanner. ModifiedLookLocker-Inversion-Recovery sequences were used for T1- and T2-mapping, images were obtained at the average left ventricle (LV) level in diastole. The LV myocardium was assessed using T1 and T2 mapping programs.

Results. Results of normal T1 relaxation times: anterior segment 956±42 (95% DI 945–968) ms, anterior-lateral (AL) segment 957±40 (95% DI 946–968) ms, posterior-lateral (PL) segment 960±44 (95% DI 948–972) ms, posterior segment 977±43 (95% DI 965–989) ms, posterior-septal (PS) segment 995±32 (95% DI 986–1004) ms, anterior-septal (AS) segment 979±39 (95% DI 968–990 ms). Results of normal T2 relaxation times: anterior segment 46±3 (95% DI 45–47) ms, AL segment 47±3 (95% DI 46–48) ms, PL segment 46±3 (95% DI 45–47) ms, posterior segment 47±3 (95% DI 46–48) ms, PS segment 46±3 (95% DI 45–47) ms, AS segment 46±3 (95% DI 45–47 ms). The average time of T1 relaxation is 974±37 ms, T2 relaxation is 46±3 ms.

Conclusion. For an accurate diagnosis, it is necessary to determine the norm of the time of T1- and T2-relaxation of parametric maps on the MRI scanner used. In this study, we determined the norms in each segment of the middle level LV myocardium for our MRI Magnetom Avanto Fit (Siemens 1.5 T).

References

  1. Timmis A., Vardas P., Townsend N., Torbica A., Katus H., De Smedt D. et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur. Heart J. 2022; 8 (4): 377–382. DOI: 10.1093/ehjqcco/qcac014
  2. Zeppenfeld K., Tfelt-Hansen J., de Riva M., Winkel B.G., Behr E., Blom N. et al. ESC Scientific Document Group, 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2022; 43 (40): 3997–4126. DOI: 10.1093/eurheartj/ehac262
  3. Golukhova E.Z., Aleksandrova S.A., Berdibekov B.Sh. Predictive role of quantification of myocardial fibrosis using delayed contrast-enhanced magnetic resonance imaging in nonischemic dilated cardiomyopathies: a systematic review and meta-analysis. Russian Journal of Cardiology. 2021; 26 (12): 4776 (in Russ.). DOI: 10.15829/1560-4071-2021-4776
  4. Sonaglioni A., Nicolosi G.L., Rigamonti E., Lombardo M., La Sala L. Molecular approaches and echocardiographic deformation imaging in detecting myocardial fibrosis. Int. J. Mol. Sci. 2022; 23 (18): 10944. DOI: 10.3390/ijms231810944
  5. Kodzova M.M., Yurpolskaya L.A., Makarenko V.N., Bockeria L.A. T1-native mapping in the differentiation of normal and diffusely affected myocardium in patients with non-ischemic dilated cardiomyopathy and low ejection fraction. Russian Journal of Thoracic and Cardiovascular Surgery. 2020; 62 (2): 108–114 (in Russ.). DOI: 10.24022/0236-2791-2020-62-2-108-114
  6. Snel G.J.H., van den Boomen M., Hernandez L.M., Nguyen C.T., Sosnovik D.E., Velthuis B.K. et al. Cardiovascular magnetic resonance native T2 and T2* quantitative values for cardiomyopathies and heart transplantations: a systematic review and meta-analysis. J. Cardiovasc. Magn. Reson. 2020; 22 (1): 34. DOI: 10.1186/s12968-020-00627-x
  7. Baev M.S., Trufanov G.E., Ryzhkov A.V., Anpilogova K.S. Myocardial T1-mapping: physical principles and general issues. Modern Problems of Science and Education. 2021; 6: 187 (in Russ.). DOI: 10.17513/spno.31235
  8. Moon J.C., Messroghli D.R., Kellman P., Piechnik S.K., Robson M.D., Ugander M. et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J. Cardiovasc. Magn. Reson. 2013; 15 (1): 92. DOI: 10.1186/1532-429X-15-92
  9. Piechnik S.K., Ferreira V.M., Lewandowski A.J., Ntusi N.A., Banerjee R., Holloway C. et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J. Cardiovasc. Magn. Reson. 2013; 15 (1): 13. DOI: 10.1186/1532-429X-15-13
  10. Golukhova E., Bulaeva N., Alexandrova S., Gromova O., Berdibekov B. Prognostic value of characterizing myocardial tissue by cardiac MRI with T1 mapping in HFpEF patients: a systematic review and meta-analysis. 2022; 11 (9). DOI: 10.3390/jcm11092531
  11. Kim P.K., Hong Y.J., Im D.J., Suh Y.J., Park C.H., Kim J.Y. et al. Myocardial T1 and T2 mapping: techniques and clinical applications. Korean J Radiol. 2017; 18 (1): 113–131. DOI: 10.3348/kjr.2017.18.1.113
  12. Suh Y.J., Kim P.K., Park J., Park E.A., Jung J.I., Choi B.W. Phantom-based correction for standardization of myocardial native T1 and extracellular volume fraction in healthy subjects at 3-Tesla cardiac magnetic resonance imaging. Eur. Radiol. 2022; 32 (12): 8122–8130. DOI: 10.1007/s00330-022-08936-8
  13. Von Knobelsdorff-Brenkenhoff F., Prothmann M., Dieringer M.A., Wassmuth R., Greiser A., Schwenke C. et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J. Cardiovasc. Magn. Reson. 2013; 15 (1): 53. DOI: 10.1186/1532-429X-15-53 14.
  14. Shaw M., Ojha V., Ganga K.P., Malhi A.S., Chandrashekhara S.H., Kumar S. et al. Reference values of myocardial native T1 and T2 mapping values in normal Indian population at 1.5 Tesla scanner. Int. J. Cardiovasc. Imag. 2022; 38 (11): 2403–2411. DOI: 10.1007/s10554-022-02648-2
  15. Granitz M., Motloch L.J., Granitz C., Meissnitzer M., Hitzl W., Hergan K., Schlattau A. Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers: reference values and clinical implications. Wien Klin. Wochenschr. 2019; 131 (7–8): 143–155. DOI: 10.1007/s00508-018-1411-3

About Authors

  •  Darya S. Marchenko, Postgraduate; ORCID
  • Svetlana A. Aleksandrova, Cand. Med. Sci., Senior Researcher, Associate Professor of Chair; ORCID
  • Elena Yu. Glazkova, Cand. Med. Sci., Researcher, Associate Professor of Chair; ORCID
  • Tatyana V. Mataeva, Cand. Med. Sci., Radiologist; ORCID
  • Mariya A. Shlyappo, Cand. Med. Sci., Radiologist; ORCID
  • Irakliy P. Aslanidis, Dr. Med. Sci., Professor, Deputy Director, Head of Department, Chief of Chair; ORCID
  • Aleksey V. Dorofeev, Cand. Med. Sci., Head of Department, Associate Professor of Chair; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery