Oxidative stress and menopausal status

Authors: Zaytseva E.V.1, Popov V.V.1, Khidirova L.D.1 2

Company: 1 Novosibirsk State Medical University, Novosibirsk, Russian Federation
2 Novosibirsk Regional Clinical Cardiology Dispensary, Novosibirsk, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2024-18-2-138-144

For citation: Zaytseva E.V., Popov V.V., Khidirova L.D. Oxidative stress and menopausal status. Creative Cardiology. 2024; 18 (2): 138–144 (in Russ.). DOI: 10.24022/1997-3187-2024-18-2-138-144

Received / Accepted:  14.02.2024 / 03.04.2024

Keywords: estrogens oxidative stress endothelial NO synthase isoprostanes GRKs (G protein-coupled receptor kinases) cyclooxygenase



Subscribe 🔒

 

Abstract

Changes in vascular endothelial function in postmenopause are the initial mechanisms for the development of cardiovascular diseases. Estrogen-mediated effects, increasing the bioavailability of nitric oxide and reducing oxidative stress and the vitamin, help maintain endothelial health. Based on current literature data, the mechanisms of development of oxidative stress in postmenopausal women and the subsequent impact on the woman’s cardiovascular system are summarized. Thus, among the most significant are dysregulatory shifts in the pro- and antioxidant system of the body, impaired regulation of vascular tone through receptor catastrophes, the development of enzymatic failure and impaired metabolic activity of vasoactive factors mediating an increase in cardiovascular risk by developing as a cause not so much endothelial dysfunction as an imbalance in many body systems as a consequence. In this regard, the problem remains relevant due to the increased rate of cardiovascular morbidity associated with menopausal status. The main pathogenetic mechanism of this problem is intense oxidative stress, which represents potential therapeutic goals for its correction.

References

  1. Somani Y.B., Pawelczyk J.A., de Souza M.J., Kris-Etherton P.M., Proctor D.N. Aging women and their endothelium: probing the relative role of estrogen on vasodilator function. Am. J. Physiol. Heart Circ. Physiol. 2019; 317 (2): H395–H404. DOI: 10.1152/ajpheart.00430.2018
  2. Hotamisligil G.S., Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 2008; 8 (12): 923–934. DOI: 10.1038/nri2449
  3. Sies H., Berndt C., Jones D.P. Oxidative stress. Annu. Rev. Biochem. 2017; 86: 7 15–748. DOI: 10.1146/annurev-biochem-061516-045037
  4. Heravi A.S., Michos E.D., Zhao D., Ambale-Venkatesh B., Doria De Vasconcellos H., Lloyd-Jones D. et al. Oxidative stress and menopausal status: the coronary artery risk development in young adults cohort study. J. Wom. Health (Larchmt). 2022; 31 (7): 1057–1065. DOI: 10.1089/jwh.2021.0248
  5. Roest M., Voorbij H.A., Van der Schouw Y.T., Peeters P.H., Teerlink T., Scheffer P.G. High levels of urinary F2-isoprostanes predict cardiovascular mortality in postmenopausal women. J. Clin. Lipidol. 2008; 2 (4): 298–303. DOI: 10.1016/j.jacl.2008.06.004
  6. Benjamin E.J., Virani S.S., Callaway C.W., Chamberlain A.M., Chang A.R., Cheng S. et al. Heart disease and stroke statistics – 2018 update: a report from the American Heart Association. Circulation. 2018; 137 (12): e67–e492. DOI: 10.1161/CIR.0000000000000558
  7. Bots S.H., Peters S.A., Woodward M. Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Glob. Health. 2017; 2 (2): e000298. DOI: 10.1136/bmjgh-2017-000298
  8. Klawitter J., Hildreth K.L., Christians U., Kohrt W.M., Moreau K.L. A relative l-arginine deficiency contributes to endothelial dysfunction across the stages of the menopausal transition. Physiol. Re. 2017; 5 (17): e13409. DOI: 10.14814/phy2.13409
  9. Delp M.D., Behnke B.J., Spier S.A., Wu G., Muller-Delp J.M. Ageing diminishes endothelium-dependent vasodilatation and tetrahydrobiopterin content in rat skeletal muscle arterioles. J. Physiol. 2008; 586 (4): 1161–1168. DOI: 10.1113/jphysiol.2007.147686
  10. Chakrabarti S., Lekontseva O., Davidge S.T. Estrogen is a modulator of vascular inflammation. IUBMB Life. 2008; 60 (6): 376–382. DOI: 10.1002/iub.48
  11. Barton M., Meyer M.R., Haas E. Hormone replacement therapy and atherosclerosis in postmenopausal women: does aging limit therapeutic benefits. Arterioscler. Thromb. Vasc. Biol. 2007; 27 (8): 1669–1672. DOI: 10.1161/ATVBAHA
  12. Hall J.M., Couse J.F., Korach K.S. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 2001; 276 (40): 36869–36872. DOI: 10.1074/jbc.R100029200
  13. Gavin K.M., Seals D.R., Silver A.E., Moreau K.L. Vascular endothelial estrogen receptor alpha is modulated by estrogen status and related to endothelial function and endothelial nitric oxide synthase in healthy women. J. Clin. Endocrinol Metab. 2009; 94 (9): 3513–3520. DOI: 10.1210/jc.2009-0278
  14. Cannavo A., Koch W.J. Targeting β3-adrenergic receptors in the heart: selective agonism and β-blockade. J. Cardiovasc. Pharmacol. 2017; 69: 71–78. DOI: 10.1097/FJC.0000000000000444
  15. Cannavo A., Komici K., Bencivenga L., D’amico M.L., Gambino G., Liccardo D. et al. GRK2 as a therapeutic target for heart failure. Expert Opin. Ther. Targets. 2018; 22 (1): 75–83. DOI: 10.1080/14728222.2018.1406925
  16. Marzano F., Rapacciuolo A., Ferrara N., Rengo G., Koch W.J., Cannavo A. Targeting GRK5 for treating chronic degenerative diseases. Int. J. Mol. Sci. 2021; 22 (4): 1920. DOI: 10.3390/ijms22041920
  17. Kneale B.J., Chowienczyk P.J., Brett S.E., Coltart D.J., Ritter J.M. Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J. Am. Coll. Cardiol. 2000; 36 (4): 1233–1238. DOI: 10.1016/s0735-1097(00)00849-4
  18. Al-Gburi S., Deussen A., Zatschler B., Weber S., Künzel S., El-Armouche A. et al. Sex-difference in expression and function of beta-adrenoceptors in macrovessels: role of the endothelium. Basic Res. Cardiol. 2017; 112 (3): 29. DOI: 10.1007/s00395-017-0617-2
  19. Hart E.C., Charkoudian N., Wallin B.G., Curry T.B., Eisenach J., Joyner M.J. Sex and ageing differences in resting arterial pressure regulation: the role of the β-adrenergic receptors. J. Physiol. 2011; 589 (21): 5285–5297. DOI: 10.1113/jphysiol.2011.212753
  20. Lindenfeld J., Cleveland J.C., Kao D.P., White M., Wichman S., Bristow J.C. et al. Sex-related differences in age-associated downregulation of human ventricular myocardial β1-adrenergic receptors. J. Heart Lung Transplant. 2016; 35 (3): 352–361. DOI: 10.1016/j.healun.2015.10.021
  21. López M.G., Abad F., Sancho C., Pascual R., Borges R., Dixon W. et al. Membrane-mediated effects of the steroid 17-alpha- estradiol on adrenal catecholamine release. J. Pharmacol. Exp. Ther. 1991; 259 (1): 279–285.
  22. Sobrino A., Oviedo P.J., Novella S., Laguna-Fernandez A., Bueno C. et al. Estradiol selectively stimulates endothelial prostacyclin production through estrogen receptor-α. J. Mol. Endocrinol. 2010; 44 (4): 237–246. DOI: 10.1677/JME-09-0112

About Authors

  • Ekaterina V. Zaytseva, Student; ORCID
  • Vladislav V. Popov, Student; ORCID
  • Lyudmila D. Khidirova, Dr. Med. Sci., Professor of the Department of Pharmacology, Clinical Pharmacology and Evidence-based Medicine of NSMU, Leading Cardiologist of NRCCD; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery