Current understanding of the mechanisms of cardiotoxicity associated with immunotherapy

Authors: Buziashvili Yu.I., Matskeplishvili S.T., Asymbekova E.U., Akhmedov D.R., Akildzhonov F.R.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2024-18-4-381-391

For citation: Buziashvili Yu.I., Matskeplishvili S.T., Asymbekova E.U., Akhmedov D.R., Akildzhonov F.R. Current understanding of the mechanisms of cardiotoxicity associated with immunotherapy. Creative Cardiology. 2024; 18 (4): 381–391 (in Russ.). DOI: 10.24022/1997-3187-2024-18-4-381-391

Received / Accepted:  12.08.2024 / 17.09.2024

Keywords: cardiotoxicity immunotherapy immune checkpoint inhibitors interleukins

Download
Full text:  

 

Abstract

Expansion of the indications for the use of immune checkpoint inhibitors (ICI) has increased understanding of the wide range of immune side effects of this group of drugs. Immune-mediated cardiotoxicity, initially considered rare, is increasingly being reported and occurs in a subclinical form with the potential for fulminant progression. The purpose of this study is to review the current molecular mechanisms of immunotherapy-associated cardiotoxicity.

Methods. We conducted a literature search in the PubMed and Google Scholar databases. Elsevier ClinicalKey, as well as in the Russian RSCI e-library database of studies, which presented modern pathogenetic aspects of the cardiotoxicity of immunotherapy. Additionally, a manual search was carried out among references from individual review articles, meta- analyses, and recommendations were used. The search depth was 10 years, but preference was given to modern sources. The following keywords were used to search for data: “cardiotoxicity, immunotherapy, immune checkpoint inhibitors, interleukins.”

Results. The literature data we present in this review illustrates the importance of understanding modern aspects of the molecular mechanism of cardiotoxicity in order to develop validated algorithms for the treatment and prevention of cardiovascular complications.

Conclusion. At this stage, the molecular mechanisms underlying fundamental cardiotoxicity are not fully understood, and gaps in knowledge about the underlying pathophysiological mechanisms still exist in the current literature. Immune- mediated cardiotoxicity is thought to result from an increased adaptive immune response against common epitopes in myocardial and tumor cells. Understanding the molecular and cellular mechanisms clearly has clinical implications and provides a window into the regulation of the immune system.

References

  1. Zhang J.Y., Yan Y.Y., Li J.J., Adhikari R., Fu L.W. PD-1/PD-L1 based combinational cancer therapy: icing on the cake. Front. Pharmacol. 2020; 11: 722. DOI:10.3389/fphar.2020.00722
  2. Larkin J., Minor D., D’Angelo S., Neyns B., Smylie M., Miller W.H., Jr. et al. Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial. J. Clin. Oncol. 2018; 36 (4): 383–390. DOI: 10.1200/jco.2016.71.8023
  3. Gan L., Liu D., Ma Y., Chen X., Dai A., Zhao S. et al. Cardiotoxicity associated with immune checkpoint inhibitors: Current status and future challenges. Front. Pharmacol. 2022; 13: 962596. DOI: 10.3389/fphar.2022.962596
  4. Rubio-Infante N., Ramírez-Flores Y.A., Castillo E.C. A systematic review of the mechanisms involved in immune checkpoint inhibitors cardiotoxicity and challenges to improve clinical safety. Front. Cell. Dev. Biol. 2022; 10: 851032. DOI: 10.3389/fcell.2022.851032
  5. Zhou Y.W., Zhu Y.J., Wang M.N., Xie Y., Chen C.Y., Zhang T. et al. Immune checkpoint inhibitor-associated cardiotoxicity: current understanding on its mechanism, diagnosis and management. Front. Pharmacol. 2019; 10: 1350. DOI: 10.3389/fphar.2019.01350
  6. Pirozzi F., Poto R., Aran L., Cuomo A., Galdiero M.R., Spadaro G. et al. Cardiovascular toxicity of immune checkpoint inhibitors: clinical risk factors. Curr. Oncol. Rep. 2021; 23 (2): 13. DOI: 10.1007/s11912-020-01002-w
  7. Samuel Y., Babu A., Karagkouni F., Ismail A., Choi S., Boussios S. Cardiac toxicities in oncology: elucidating the dark box in the era of precision medicine. Curr. Issues Mol. Biol. 2023; 45 (10): 8337–8358. DOI: 10.3390/cimb45100526
  8. Elia I., Haigis M.C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 2021; 3 (1): 21–32. DOI: 10.1038/s42255-020-00317-z
  9. Bajracharya R., Song J.G., Patil B.R., Lee S.H., Noh H.M., Kim D.H. et al. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug. Deliv. 2022; 29 (1): 1959–1970. DOI: 10.1080/10717544.2022.2089296
  10. Kim S.K., Cho S.W.. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front. Pharmacol. 2022; 13: 868695. DOI: 10.3389/fphar.2022.868695
  11. Won T., Kalinoski H.M., Wood M.K., Hughes D.M., Jaime C.M., Delgado P. et al. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell. Rep. 2022; 41 (6): 111611. DOI: 10.1016/j.celrep.2022.111611
  12. Jo W., Won T., Daoud A., Čiháková D. Immune checkpoint inhibitors associated cardiovascular immune-related adverse events. Front. Immunol. 2024; 15: 1340373. DOI: 10.3389/fimmu.2024.1340373
  13. Tolstrup L.K., Bastholt L., Zwisler A.D., Dieperink K.B., Pappot H. Selection of patient reported outcomes questions reflecting symptoms for patients with metastatic melanoma receiving immunotherapy. J. Patient. Rep. Outcomes. 2019; 3 (1): 19. DOI: 10.1186/s41687-019-0111-8
  14. Watson G.A., Veitch Z.W., Shepshelovich D., Liu Z.A., Spreafico A., Abdul Razak A.R. et al. Evaluation of the patient experience of symptomatic adverse events on Phase I clinical trials using PRO-CTCAE. Br. J. Cancer. 2022; 127 (9): 1629–1635. DOI: 10.1038/s41416-022-01926-z
  15. Zhao Y., Caron C., Chan Y.Y., Lee C.K., Xu X., Zhang J. cis-B7:CD28 interactions at invaginated synaptic membranes provide CD28 co-stimulation and promote CD8+ T cell function and anti-tumor immunity. Immunity. 2023; 56 (6): 1187–1203.e12. DOI: 10.1016/j. immuni.2023.04.005
  16. Ohue Y., Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019; 110 (7): 2080–2089. DOI:10.1111/cas.14069
  17. Ronen D., Bsoul A., Lotem M., Abedat S., Yarkoni M., Amir O. et al. Exploring the mechanisms underlying the cardiotoxic effects of immune checkpoint inhibitor therapies. Vaccines (Basel). 2022; 10 (4): 540. DOI: 10.3390/vaccines10040540
  18. Xiang Y., Liu X., Wang Y., Zheng D., Meng Q., Jiang L. et al. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front. Immunol. 2024; 15: 1366260. DOI: 10.3389/fimmu.2024.1366260
  19. Ayass M.A., Tripathi T., Griko N., Okyay T., Ramankutty Nair R. et al. Dual checkpoint aptamer immunotherapy: unveiling tailored cancer treatment targeting CTLA-4 and NKG2A. Cancers (Basel). 2024; 16 (5): 1041. DOI: 10.3390/cancers16051041
  20. Sobhani N., Tardiel-Cyril D.R., Davtyan A., Generali D., Roudi R., Li Y. CTLA-4 in regulatory T cells for cancer immunotherapy. Cancers (Basel). 2021; 13 (6): 1440. DOI: 10.3390/cancers13061440
  21. Babamohamadi M., Mohammadi N., Faryadi E., Haddadi M., Merati A., Ghobadinezhad F. et al. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis. 2024; 15 (1): 17. DOI: 10.1038/s41419-023-06391-x
  22. Michel L., Ferdinandy P., Rassaf T. Cellular alterations in immune checkpoint inhibitor therapy-related cardiac dysfunction. Curr. Heart Fail. Rep. 2024; 21 (3): 214–223. DOI: 10.1007/s11897-024-00652-2
  23. Marasco M., Berteotti A., Weyershaeuser J., Thorausch N., Sikorska J., Krausze J. et al. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv. 2020; 6 (5): eaay4458. DOI: 10.1126/sciadv.aay4458
  24. Lin X., Kang K., Chen P., Zeng Z., Li G., Xiong W. et al. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer. 2024; 23 (1): 108. DOI: 10.1186/s12943-024-02023-w
  25. Michel L., Korste S., Spomer A., Hendgen-Cotta U.B., Rassaf T., Totzeck M. PD1 deficiency modifies cardiac immunity during baseline conditions and in reperfused acute myocardial infarction. Int. J. Mol. Sci. 2022; 23 (14): 7533. DOI: 10.3390/ijms23147533
  26. Rikhi R., Karnuta J., Hussain M., Collier P., Funchain P., Tang W.H.W. et al. Immune checkpoint inhibitors mediated lymphocytic and giant cell myocarditis: uncovering etiological mechanisms. Front. Cardiovasc. Med. 2021; 8: 721333. DOI: 10.3389/fcvm.2021.721333
  27. Liu S., Gao W., Ning Y., Zou X., Zhang W., Zeng L. et al. Cardiovascular toxicity with PD-1/PD-L1 inhibitors in cancer patients: a systematic review and meta-analysis. Front. Immunol. 2022; 13: 908173. DOI: 10.3389/fimmu.2022.908173
  28. Quagliariello V., Passariello M., Rea D., Barbieri A., Iovine M., Bonelli A. et al. Evidences of CTLA-4 and PD-1 blocking agents-induced cardiotoxicity in cellular and preclinical models. J. Pers. Med. 2020; 10 (4): 179. DOI: 10.3390/jpm10040179
  29. Sauer N., Szlasa W., Jonderko L., Oślizło M., Kunachowicz D., Kulbacka J. et al. LAG-3 as a potent target for novel anticancer therapies of a wide range of tumors. Int. J. Mol. Sci. 2022; 23 (17): 9958. DOI: 10.3390/ijms23179958
  30. Tagliamento M., Agostinetto E., Borea R., Brandão M., Poggio F., Addeo A., Lambertini M. VISTA: a promising target for cancer immunotherapy? Immunotargets Ther. 2021; 10: 185–200. DOI: 10.2147/ITT.S260429
  31. Okiyama N., Tanaka R. Immune-related adverse events in various organs caused by immune checkpoint inhibitors. Allergol. Int. 2022; 71 (2): 169–178. DOI: 10.1016/j.alit.2022.01.001
  32. Jin T., Park K.S., Nam S.E., Lim S.H., Kim J.H., Noh W.C. et al. CTLA4 expression profiles and their association with clinical outcomes of breast cancer: a systemic review. Ann. Surg. Treat. Res. 2024; 106 (5): 263–273. DOI: 10.4174/astr.2024.106.5.263
  33. Chu J., Wu Y., Qu Z., Zhuang J., Liu J., Han S. et al. Transcriptional profile and immune infiltration in colorectal cancer reveal the significance of inducible T-cell costimulator as a crucial immune checkpoint molecule. Cancer Med. 2024; 13 (6): e7097. DOI: 10.1002/cam4.7097
  34. Gianchecchi E., Fierabracci A. Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in treg development and their involvement in autoimmunity onset and cancer progression. Front. Immunol. 2018; 9: 2374. DOI: 10.3389/fimmu.2018.02374
  35. Mitra A., Kumar A., Amdare N.P., Pathak R. Current landscape of cancer immunotherapy: harnessing the immune arsenal to overcome immune evasion. Biology (Basel). 2024; 13 (5): 307. DOI: 10.3390/biology13050307
  36. Shalit A., Sarantis P., Koustas E., Trifylli E.M., Matthaios D., Karamouzis M.V. Predictive biomarkers for immune-related endocrinopathies following immune checkpoint inhibitors treatment. Cancers (Basel). 2023; 15 (2): 375. DOI: 10.3390/cancers15020375
  37. Sharma T., Khandelwal V. Evaluation of immunomodulatory (humoral as well as cell-mediated) and cytokines (TNF-α & IL-10) regulating potential of Neolamarckia cadamba fruit extract in Wistar albino rats. Biotech. 2024; 14 (4): 98. DOI: 10.1007/s13205-024-03947-2
  38. Hou W., Jin Y.H., Kang H.S., Kim B.S. Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting cellular apoptosis and cytotoxic T cell function. J. Virol. 2014; 88 (15): 8479–8489. DOI: 10.1128/JVI.00724-14
  39. Raschi E., Rossi S., De Giglio A., Fusaroli M., Burgazzi F., Rinaldi R. et al. Cardiovascular toxicity of immune checkpoint inhibitors: a guide for clinicians. Drug Saf. 2023; 46 (9): 819–833. DOI: 10.1007/s40264-023-01320-5
  40. Casagrande S., Sopetto G.B., Bertalot G., Bortolotti R., Racanelli V., Caffo O. et al. Immune-кelated фdverse уvents вue to сancer шmmunotherapy: immune mechanisms and clinical manifestations. Cancers (Basel). 2024; 16 (7): 1440. DOI: 10.3390/cancers16071440
  41. Gergely T.G., Kucsera D., Tóth V.E., Kovács T., Sayour N.V., Drobni Z.D. et al. Characterization of immune checkpoint inhibitor-induced cardiotoxicity reveals interleukin-17A as a driver of cardiac dysfunction after anti-PD-1 treatment. Br. J. Pharmacol. 2023; 180 (6): 740–761. DOI: 10.1111/bph.15984
  42. Stepanenko A.V., Maroto Pérez L., Fierro Lorenzo I., Bushnaq H. Surgical revascularization and veno-arterial extracorporeal membrane oxygenation in patients with cardiogenic shock after acute myocardial infarction. Predictors of hospital discharge. Grudnaya i Serdechno- Sosudistaya Khirurgiya. 2022; 64 (1): 70–77 (in English.). DOI: 10.24022/0236-2791-2022-64-1-70-77

About Authors

  • Jurij I. Buziashvili, Dr. Med. Sci., Professor, Academician of the Russian Academy of Sciences, Head of the Clinico-Diagnostic Department; ORCID
  • Simon T. Mackeplishvili, Dr. Med. Sci., Professor, Chief Researcher; ORCID
  • Elmira U. Asymbekova, Dr. Med. Sci., Leading Researcher; ORCID
  • Daniyal R. Akhmedov, Postgraduate ORCID
  • Firdavsdzhon R. Akildzhonov, Cand. Med. Sci., Junior Researcher; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery