Cardiac rehabilitation after surgical correction of congenital heart disease in adult patients. Difficult questions

Authors: Dzhitava T.G., Filaretova O.V., Filatova A.G., Danilov T.Yu., Kovalev D.V.

Company: Bakоulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russia Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2024-18S-S17-S33

For citation: Dzhitava T.G., Filaretova O.V., Filatova A.G., Danilov T.Yu., Kovalev D.V. Cardiac rehabilitation after surgical correction of congenital heart disease in adult patients. Difficult questions. Creative Cardiology. 2024; 18 (Special Issue): S17–S33 (in Russ.). DOI: 10.24022/1997-3187-2024-18S-S17-S33

Received / Accepted:  07.11.2024 / 02.12.2024

Keywords: congenital heart disease cardiopulmonary exercise testing peak oxygen consumption cardiorespiratory training physical exercise submaximal cardiopulmonary test values

Download
Full text:  

 

Abstract

In recent decades, the number of adults with congenital heart disease (CHD) has been increasing, with their population trend surpassing that of pediatric patients. The frequency of repeat and palliative surgeries in this patient category is also on the rise. Throughout their lifetime, adult patients with CHD may develop comorbidities, which heighten the risk of adverse outcomes post-surgery. One of the most crucial tools for risk stratification, surgical prognosis, disease course, and cardiorespiratory fitness is cardiopulmonary exercise testing (CPET). Given the diversity in heart defect anatomy, physiological status, baseline reduced physical capacity, and associated comorbidities, data analysis and interpretation are complex. Additional submaximal variables can serve as significant indicators. The temporal dynamics of key CPET indicators in individual patients have greater prognostic significance.

Controlled exercise is a fundamental component of cardiac rehabilitation programs for patients with CHD. Post most restorative surgeries, exercise improves physical performance and enables patients to achieve normal or near-normal activity levels. Due to the significant heterogeneity among CHD patients, rehabilitation methodology and cardiac rehabilitation in general necessitate diversity, flexible exercise protocols, and a combination of various components.

The expansion of cardiac rehabilitation capabilities today is determined by the development of an interconnected system across all stages: inpatient and outpatient; the expansion of patient educational programs, and tele cardiac rehabilitation. Cardiac rehabilitation stages should be viewed as a continuous process employing interconnected approaches to the organization of each patient’s rehabilitation process.

References

  1. Warnes C.A. The adult with congenital heart disease: born to be bad? J. Am. Coll. Cardiol. 2005; 46 (1): 1–8. DOI: 10.1016/j.jacc.2005.02.083
  2. Neidenbach R., Niwa K., Oto O., Oechslin E., Aboulhosn J., Celermajer D. et al. Improving medical care and prevention in adults with congenital heart disease – reflections on a global problem – part I: development of congenital cardiology, epidemiology, clinical aspects, heart failure, cardiac arrhythmia. Cardiovasc. Diagn. Ther. 2018; 8 (6): 705–715. DOI: 10.21037/cdt.2018.10.15
  3. Danilov T.Yu., Minaev A.V., Malinkin I.A., Zemlyanskaya I.V. Replacement of both atrioventricular valves in an adult patient with corrected transposition of the great arteries and decompensated heart failure with a reduced ejection fraction. Grudnaya i Serdechno-Sosudistaya Khirurgiiya. 2023; 65 (1): 101–105 (in Russ.). DOI: 10.24022/0236-2791-2023-65-1-101-105
  4. Tobler D., Schwerzmann M., Bouchardy J., Engel R., Stambach D., Attenhofer Jost C. et al. Swiss Adult Congenital HEart disease Registry (SACHER) – rationale, design and first results. Swiss Med. Wkly. 2017; 27; 147: w14519. DOI: 10.4414/smw.2017.14519
  5. Greutmann M., Pieper P.G. Pregnancy in women with congenital heart disease. Eur. Heart J. 2015; 36 (37): 2491–2499. DOI: 10.1093/eurheartj/ehv288. Epub 2015 Jun 25
  6. Liu Y., Li Y., Zhang J., Zhao W., Bao Z. et al. Pregnancy complications and outcomes among women with congenital heart disease in Beijing, China. Front. Cardiovasc. Med. 2022; 8: 765004. DOI: 10.3389/fcvm.2021.765004
  7. Tran D., Maiorana A., Ayer J., Lubans D.R., Davis G.M., Celermajer D.S. et al. Recommendations for exercise in adolescents and adults with congenital heart disease. Prog. Cardiovasc. Dis. 2020; 63 (3): 350–366. DOI: 10.1016/j.pcad.2020.03.002. Epub 2020 Mar 19
  8. Awerbach J.D., Krasuski R.A., Camitta M.G.W. Coronary disease and modifying cardiovascular risk in adult congenital heart disease patients: should general guidelines apply? Prog. Cardiovasc. Dis. 2018; 61 (3–4): 300–307. DOI: 10.1016/j.pcad.2018.07.018. Epub 2018 Jul 21
  9. Fisher S.C., Van Zutphen R.A., Werler M.M., Lin A.E., Romitti P.A., Druschel C.M., Browne M.L. and the National Birth Defects Prevention Study. Maternal antihypertensive medication use and congenital heart defects. Hypertension. 2017; 69 (5): 798–805. DOI: 10.1161/ HYPERTENSIONAHA.116.08773
  10. National guidelines for adult patients with congenital heart disease. Moscow: Bakoulev National Medical Research Center for Cardiovascular Surgery. Moscow; 2010 (in Russ.).
  11. Camm A.J. The ESC Textbook of Cardiovascular Medicine, 2nd ed./ Ed. by A.J. Camm, T. Lüscher, P.W. Serruys. Ed. E.V. Shlyakhto. Moscow; 2011 (in Russ.).
  12. Piepoli M.F., Guazzi M., Boriani G., Cicoira M., Corrà U., Dalla Libera L. et al. Working Group ‘Exercise Physiology, Sport Cardiology and Cardiac Rehabilitation’, Italian Society of Cardiology. Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I. Eur. J. Cardiovasc. Prev. Rehabil. 2010; 17 (6): 637–642. DOI: 10.1097/HJR.0b013e3283361dc5
  13. Balady G.J., Williams M.A., Ades P.A., Bittner V., Comoss P., Foody J.M. et al. American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; American Heart Association Council on Cardiovascular Nursing; American Heart Association Council on Epidemiology and Prevention; American Heart Association Council on Nutrition, Physical Activity, and Metabolism; American Association of Cardiovascular and Pulmonary Rehabilitation. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007; 115 (20): 2675–2682. DOI: 10.1161/CIRCULATIONAHA.106.180945. Epub 2007 May 18.
  14. Meyer Ph., EuroPrevent. 2019 11–13 April, Lisbon, Portugal.
  15. Williams M.A., Haskell W.L., Ades P.A., Amsterdam E.A., Bittner V., Franklin B.A. et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007; 116 (5): 572–584
  16. Tran D.L., Maiorana A., Davis G.M., Celermajer D.S., d’Udekem Y., Cordina R. Exercise testing and training in adults with congenital heart disease: A surgical perspective. Ann. Thorac. Surg. 2021; 112 (4): 1045–1054. DOI: 10.1016/j.athoracsur.2020.08.118. Epub 2020 Dec 4.
  17. Glushko L.A., Shmalts A.A. Assessment of the state of the cardiorespiratory system in pulmonary hypertension associated with congenital heart disease. Creative cardiology. 2021; 15(2): 167–179 (in Russ.). DOI: 10.24022/1997-3187-2021-15-2-167-179
  18. Breviario S., Krishnathasan K., Ministeri M., Kempny A., Frisiras A., Rafiq I. et al. Safety of cardiopulmonary exercise testing in a large contemporary cohort of adults with congenital heart disease: implications on levels of test supervision. Eur. Heart J. 2023; 44 (Suppl. 2): 2023: ehad655.1933. DOI: 10.1093/eurheartj/ehad655.1933
  19. Budts W., Börjesson M., Chessa M., van Buuren F., Trigo Trindade P., Corrado D. et al. Physical activity in adolescents and adults with congenital heart defects: individualized exercise prescription. Eur. Heart J. 2013; 34 (47): 3669–3674. DOI: 10.1093/eurheartj/eht433
  20. Lacombe Sh.P., LaHaye S.A., Hopkins-Rosseel D., Ball D., Lau W. Identifying patients at low risk for activity-related events: The rare SCORE. J. Cardiopulmon. Rehabil. Prevention. 2014; 34: 180–187. DOI: 10.1097/HCR.000000000000045
  21. Mantegazza V., Apostolo A., Hager A. Cardiopulmonary exercise testing in adult congenital heart disease. Ann. Am. Thorac. Soc. 2017; 14 (Suppl. 1): S93–S101. DOI: 10.1513/AnnalsATS.201611-876FR
  22. Perloff J.K., Child J.S., Jamil A. Congenital heart disease in adults. 3rd ed. 2009.
  23. Hernández-Madrid A., Paul T., Abrams D., Aziz P.F., Blom N.A., Chen J. et al. ESC Scientific Document Group. Arrhythmias in congenital heart disease: a position paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital heart disease, endorsed by HRS, PACES, APHRS, and SOLAECE. Europace. 2018; 20 (11): 1719–1753. DOI: 10.1093/europace/eux380. PMID: 29579186
  24. Bockeria L.A., Zelenikin M.A., Golukhova E.Z., Batov S.M. Heart rhythm and conduction disturbances in early postoperative period after surgical correction for congenital heart defects in infants. Annaly Aritmologii. 2012; 9 (1): 24–32 (in Russ.).
  25. Bockeria L.A., Rubtsov P.P. Аrrhythmias in adults with congenital heart disease. Annaly Aritmologii. 2021; 18 (1): 26–36 (in Russ.). DOI: 10.15275/annaritmol.2021.1.3
  26. Brugada J., Blom N., Sarquella-Brugada G., Blomstrom-Lundqvist C., Deanfield J., Janousek J. European Heart Rhythm Association; Association for European Paediatric and Congenital Cardiology et al. Pharmacological and non-pharmacological therapy for arrhythmias in the pediatric population: EHRA and AEPC-Arrhythmia Working Group joint consensus statement. Europace. 2013; 15: 1337–1382. DOI: 10.1093/curopace/eut082
  27. Katritsis D.G., Boriani G., Cosio F.G., Hindricks G., Jaïs P., Josephson M.E. European Heart Rhythm Association (EHRA) consensus document on the management of supraventricular arrhythmias, endorsed by Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardiaca y Electrofisiologia (SOLAECE). Europace. 2017; 19: 465–511. DOI: 10.1093/ curopace/euw304
  28. Karbassi A., Nair K., Harris L., Wald R.M., Roshe S.L. et al. Atrial tachyarrhythmia in adults congenital heart disease. World J. Cardiol. 2017; 9(6): 496–507. DOI: 10.4330/wjc.v9.i6.496
  29. Ten Harkel A.D., Takken T. Exercise testing and prescription in patients with congenital heart disease. Int. J. Pediatr. 2010: 791980. DOI: 10.1155/2010/791980. Epub 2010 Sep 6.
  30. Fredriksen P.M., Therrien J., Veldtman G., Warsi M.A., Liu P., Siu S. et al. Lung function and aerobic capacity in adult patients following modified Fontan procedure. Heart. 2001; 85 (3): 295–299. DOI: 10.1136/heart.85.3.295
  31. Norozi K., Wessel A., Alpers V., Arnhold J.O., Binder L., Geyer S. et al. Chronotropic incompetence in adolescents and adults with congenital heart disease after cardiac surgery. J. Card. Fail. 2007; 13 (4): 263–268. DOI: 10.1016/j.cardfail.2006.12.002
  32. Wilkoff B.L., Miller R.E. Exercise testing for chronotropic assessment. Cardiol. Clin. 1992; 10 (4): 705–717.
  33. Diller G.P., Dimopoulos K., Okonko D., Uebing A., Broberg C.S., Babu-Narayan S. et al. Heart rate response during exercise predicts survival in adults with congenital heart disease. J. Am. Coll. Cardiol. 2006; 48 (6): 1250–1256. DOI: 10.1016/j.jacc.2006.05.051. Epub 2006 Aug 28.
  34. Savova E.M., Zavarina A.Yu., Shvedunova V.N., Putyato N.A. Physical rehabilitation in children with congenital heart disease: current state of the problem. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2020; 21 (5): 474–487 (in Russ.). DOI: 1810-0694-2020-21-5-474-487
  35. Greutmann M. Exercise testing in adult congenital heart disease: At center stage for many reasons. Int. J. Cardiol. Congeni. Heart Dis. 2021; 2: 100087. DOI: 10.1016/j.ijcchd.2021.100087
  36. Buys R., Cornelissen V., Van De Bruaene A., Stevens A., Coeckelberghs E., Onkelinx S. et al. Measures of exercise capacity in adults with congenital heart disease. Int. J. Cardiol. 2011; 153 (1): 26–30. DOI: 10.1016/j.ijcard.2010.08.030. Epub 2010 Sep 16.
  37. Takano N., Takano H., Fukuda T., Kikuchi H., Oguri G., Fukumura K. еt al. Relationship between chronotropic incompetence and β-blockers based on changes in chronotropic response during cardiopulmonary exercise testing. Int. J. Cardiol. Heart Vasc. 2014; 6: 12–18. DOI: 10.1016/j.ijcha.2014.11.002
  38. Ramos P.S., Araújo C.G. Cardiorespiratory optimal point during exercise testing as a predictor of all-cause mortality. Rev. Port. Cardiol. 2017; 36 (4): 261–269 (in Portug.). DOI: 10.1016/j.repc.2016.09.017. Epub 2017 Mar 17.

About Authors

  • Tamara G. Dzhitava, Cand. Med. Sci., Head of Department; ORCID
  • Olga V. Filaretova, Dr. Med. Sci., Professor of Chair; ORCID
  • Angelina G. Filatova, Doctor of Physical and Rehabilitaion Medicine, Cardiologist; ORCID
  • Timur Yu. Danilov, Dr. Med. Sci., Chief Researcher, Head of Department; ORCID
  • Dmitry V. Kovalev, Dr. Med. Sci., Leading Researcher; ORCID

Chief Editor

Elena Z. Golukhova, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery


Sort by