Molecular and genetic aspects cardiotoxicity of cancer chemotherapy

Authors: Buziashvili Yu.I., Matskeplishvili S.T., Asymbekova E.U., Tugeeva E.F., Akildzhonov F.R.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187- 2024-18S-S57–S63

For citation: Buziashvili Yu.I., Matskeplishvili S.T., Asymbekova E.U., Tugeeva E.F., Akildzhonov F.R. Molecular and genetic aspects cardiotoxicity of cancer chemotherapy. Creative Cardiology. 2024; 18 (Special Issue): S57–S63 (in Russ.). DOI: 10.24022/1997-3187- 2024-18S-S57–S63

Received / Accepted:  21.11.2024 / 19.12.2024

Keywords: cardiotoxicity genetics cardio-oncology chemotherapy

Download
Full text:  

 

Abstract

Currently, various methods are used to treat advanced malignancies, including surgery, radiation therapy, traditional chemotherapy, targeted drugs, immune checkpoint inhibitors, and molecular cell therapy. However, most of the current treatment methods are associated with the risk of developing cardiovascular toxicity of varying degrees, which is a serious problem for patients. With the development of precision medicine, in particular using genetic diagnostic technologies, new prospects have emerged for the diagnosis of cardiotoxicity through deep phenotyping. Understanding the possibilities of precision medicine in cardio-oncology is key to the successful implementation of preventive, diagnostic, and therapeutic interventions. In this review, we aim to demonstrate the key molecular genetic aspects of cardiotoxicity resulting from anticancer chemotherapy, as well as consider the prospects for the development of precision medicine in cardio-oncology.

References

  1. Kuang Z., Kong M., Yan N., Ma X., Wu M., Li J. Precision cardio-oncology: update on omics-based diagnostic methods. Curr. Treat. Options Oncol. 2024; 25 (5): 679–701. DOI: 10.1007/s11864-024-01203-6
  2. Armenian S.H., Lacchetti C., Barac A., Carver J., Constine L., Denduluri N. et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2017; 35 (8): 893–911. DOI: 10.1200/JCO.2016.70.5400
  3. McGowan J.V., Chung R., Maulik A., Piotrowska I., Walker J.M., Yellon D.M. et al. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc. Drugs. Ther. 2017; 31 (1): 63–75. DOI: 10.1007/s10557-016-6711-0
  4. Buziashvili Yu.I., Stilidi I.S., Matskeplishvili S.T., Asymbekova E.U., Tugeeva E.F., Artamonova E.V. et al. Cardiovascular and oncological diseases – focus on modifiable risk factors and modern pathogenetic aspects. Annals of the Russian Academy of Medical Sciences. 2023; 78(2) 132–140 (in Russ.). DOI: 10.15690/vramn8359
  5. Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2023 and development prospects. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; 25 (Special Issue) (in Russ.). DOI: 10.24022/1810-0694-2024-25S
  6. Buziashvili Yu.I., Asymbekova E.U., Ioshina V.I., Koksheneva I.V. The results of the medical and scientific work of the Clinical-Diagnostic Department for 2021. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2022; 23 (5): 537–548 (in Russ.). DOI: 10.24022/1810-0694-2022-23-5-537-548
  7. Buziashvili Yu.I., Stilidi I.S., Asymbekova E.U., Matskeplishvili S.T., Artamonova E.V., Akhmediarova N.K. et al. A complex approach to continuous cardiac monitoring of neoadjuvant chemotherapy: observational study. Consilium Medicum. 2022; 24 (6): 399–407 (in Russ.). DOI: 10.26442/20751753.2022.6.201700
  8. Debbi K., Grellier N., Loganadane G., Boukhobza C., Mahé M., Cherif M.A. et al. Interaction between radiation therapy and targeted therapies in HER2-positive breast cancer: literature review, levels of evidence for safety and recommendations for optimal treatment sequence. Cancers (Basel). 2023; 15 (8): 2278. DOI: 10.3390/cancers15082278
  9. Mihalcea D., Memis H., Mihaila S., Vinereanu D. Cardiovascular toxicity induced by vascular endothelial growth factor inhibitors. Life (Basel). 2023; 13 (2): 366. DOI: 10.3390/life13020366
  10. Greene D.; Genomics England Research Consortium, Pirri D., Frudd K., Sackey E., Al-Owain M. et al. Genetic association analysis of 77,539 genomes reveals rare disease etiologies. Nat. Med. 2023; 29 (3): 679–688. DOI: 10.1038/s41591-023-02211-z
  11. Kingdom R., Wright C.F. Incomplete penetrance and variable expressivity: from clinical studies to population cohorts. Front. Genet. 2022; 13: 920390. DOI: 10.3389/fgene.2022.920390
  12. Villa M., Wu J., Hansen S., Pahnke J. Emerging role of ABC transporters in glia cells in health and diseases of the central nervous system. Cells. 2024; 13 (9): 740. DOI: 10.3390/cells13090740
  13. Yang X., Li G., Guan M., Bapat A., Dai Q., Zhong C. et al. Potential gene association studies of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. Front. Cardiovasc. Med. 2021; 8: 651269. DOI: 10.3389/fcvm.2021.651269
  14. Muckiene G., Vaitiekus D., Zaliaduonyte D., Bartnykaite A., Plisiene J., Zabiela V. et al. The impact of polymorphisms in ATP-binding cassette transporter genes on anthracycline-induced early cardiotoxicity in patients with breast cancer. J. Cardiovasc. Dev. Dis. 2023; 10 (6): 232. DOI: 10.3390/jcdd10060232
  15. Reichwagen A., Ziepert M., Kreuz M., Gödtel-Armbrust U., Rixecker T., Poeschel V. et al. Association of NADPH oxidase polymorphisms with anthracycline-induced cardiotoxicity in the RICOVER-60 trial of patients with aggressive CD20(+) B-cell lymphoma. Pharmacogenomics. 2015; 16 (4): 361–372. DOI: 10.2217/pgs.14.179
  16. Hurkmans E.G.E., Brand A.C.A.M., Verdonschot J.A.J., Te Loo D.M.W.M., Coenen M.J.H. Pharmacogenetics of chemotherapy treatment response and toxicities in patients with osteosarcoma: a systematic review. BMC Cancer. 2022; 22 (1): 1326. DOI: 10.1186/s12885-022-10434-5
  17. Ding Y., Du K., Niu Y.J., Wang Y., Xu X. Genetic susceptibility and mechanisms underlying the pathogenesis of anthracycline-associated cardiotoxicity. Oxid. Med. Cell. Longev. 2022; 2022: 5818612. DOI: 10.1155/2022/5818612
  18. Hertz D.L., Caram M.V., Kidwell K.M., Thibert J.N., Gersch C., Seewald N.J. et al. Evidence for association of SNPs in ABCB1 and CBR3, but not RAC2, NCF4, SLC28A3 or TOP2B, with chronic cardiotoxicity in a cohort of breast cancer patients treated with anthracyclines. Pharmacogenomics. 2016; 17 (3): 231–240. DOI: 10.2217/pgs.15.162
  19. Reinbolt R.E., Patel R., Pan X., Timmers C.D., Pilarski R., Shapiro C.L., Lustberg M.B. et al. Risk factors for anthracycline-associated cardiotoxicity. Support Care Cancer. 2016; 24 (5): 21 73–2180. DOI: 10.1007/s00520-015-3008-y
  20. Visscher H., Ross C.J., Rassekh S.R., Sandor G.S.S., Caron H.N., van Dalen E.C. et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood. Cancer. 2013; 60 (8): 1375–1381. DOI: 10.1002/pbc.24505
  21. Visscher H., Ross C.J., Rassekh S.R., Barhdadi A., Dubé M.-P., Al-Saloos H. et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. 2012; 30 (13): 1422–1428. DOI: 10.1200/JCO.2010.34.3467
  22. Agunbiade T.A., Zaghlol R.Y., Barac A. Heart failure in relation to anthracyclines and other chemotherapies. Methodist. Debakey Cardiovasc. J. 2019; 15 (4): 243–249. DOI: 10.14797/mdcj-15-4-243
  23. Sági J.C., Egyed B., Kelemen A., Kutszegi N., Hegyi M., Gézsi A. et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer. 2018; 18 (1): 704. DOI: 10.1186/ s12885-018-4629-6
  24. Fonoudi H., Jouni M., Cejas R.B., Magdy T., Blancard M., Ge N. et al. Functional validation of doxorubicin-induced cardiotoxicity-related genes. JACC CardioOncol. 2024; 6 (1): 38–50. DOI: 10.1016/j.jaccao.2023.11.008
  25. Cipriano A., Viviano M., Feoli A., Milite C., Sarno G., Castellano S., Sbardella G. NADPH oxidases: from molecular mechanisms to current inhibitors. J. Med. Chem. 2023; 66 (17): 11632–11655. DOI: 10.1021/acs.jmedchem.3c00770
  26. Wojnowski L., Kulle B., Schirmer M., Schlüter G., Schmidt A., Rosenberger A. et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005; 112 (24): 3754–3762. DOI: 10.1161/ CIRCULATIONAHA.105.576850
  27. Megías-Vericat J.E., Montesinos P., Herrero M.J., Moscardó F., Bosó V., Rojas L. et al. Impact of NADPH oxidase functional polymorphisms in acute myeloid leukemia induction chemotherapy. Pharmacogenomics J. 2018; 18 (2): 301–307. DOI: 10.1038/tpj.2017.19
  28. Stafford L.K., Tang X., Brandt A., Ma J., Banchs J., Livingston J.A. et al. Risk of anthracycline-induced cardiac dysfunction in adolescent and young adult (AYA) cancer survivors: role of genetic susceptibility loci. Pharmacogenomics J. 2024; 24 (4): 21. DOI: 10.1038/ s41397-024-00343-0
  29. Buziashvili Yu.I., Stilidi I.S., Matskeplishvili S.T., Asymbekova E.U., Tugeeva E.F., Artamonova E.V. et al. Early prevention of cardiotoxicity: focus on inhibitors of sodium-glucose co-transporter 2. Clinical Physiology of Circulation. 2023; 20 (3): 288–299 (in Russ.). DOI: 10.24022/1814-6910-2023-20-3-288-299
  30. Alexandraki A., Papageorgiou E., Zacharia M., Keramida K., Papakonstantinou A., Cipolla C.M. et al. New Insights in the era of clinical biomarkers as potential predictors of systemic therapy-induced cardiotoxicity in women with breast cancer: a systematic review. Cancers (Basel). 2023; 15 (13): 3290. DOI: 10.3390/cancers15133290
  31. Boen H.M., Alaerts M., Goovaerts I., Saenen J.B., Franssen C., Vorlat A. et al. Variants in structural cardiac genes in patients with cancer therapy-related cardiac dysfunction after anthracycline chemotherapy: a case control study. Cardiooncology. 2024; 10 (1): 26. DOI: 10.1186/ s40959-024-00231-3

About Authors

  • Yuriy I. Buziashvili, Dr. Med. Sci., Professor, Academician of Russian Academy of Sciences, Head of the Department; ORCID
  • Simon T. Matskeplishvili, Dr. Med. Sci., Professor, Corresponding Member of the Russian Academy of Sciences, Chief Research Associate; ORCID
  • Elmira U. Asymbekova, Dr. Med. Sci., Leading Research Associate; ORCID
  • Elvina F. Tugeeva, Dr. Med. Sci., Senior Research Associate; ORCID
  • Firdavsdzhon R. Akildzhonov, Postgraduate; ORCID

Chief Editor

Elena Z. Golukhova, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery


Sort by