Epicardial adipose tissue as a substrate for atrial structural remodeling in atrial fibrillation
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Abgaryan A.A., Berdibekov B.Sh., Bulaeva N.I., Golukhova E.Z. Epicardial adipose tissue as a substrate for atrial structural remodeling in atrial fibrillation. Creative Cardiology. 2025; 19 (2): 122–130 (in Russ.). DOI: 10.24022/1997-3187-2025-19-2-122-130
Received / Accepted: 10.02.2025 / 10.03.2025
Keywords: atrial fibrillation pulmonary vein isolation left atrial fibrosis pulmonary vein isolation epicardial fat obesity myocardial fibrosis markers
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, with its prevalence rising significantly with age. It is strongly linked to an elevated risk of stroke, heart failure, and cardiovascular mortality. Among the various risk factors contributing to the onset and progression of AF, obesity and inflammation are particularly significant. Recent studies have highlighted the role of epicardial adipose tissue (EAT), the heart’s visceral fat depot, in the development of AF. EAT has been implicated in several arrhythmogenic mechanisms, including myocardial inflammation, fibrosis, oxidative stress, and fat infiltration. As a local source of inflammatory mediators, EAT may contribute to atrial collagen deposition and fibrosis, which form the structural basis for AF. Additionally, the close anatomical relationship between EAT and the myocardium allows EAT to infiltrate the atrial tissue, potentially altering its electrophysiological properties. These findings underscore the hypothesis that EAT plays a critical role in both structural and electrical atrial remodeling, processes central to the initiation and progression of AF.
The quantification of EAT using imaging techniques such as echocardiography, computed tomography, and cardiac magnetic resonance has been proposed as a valuable prognostic tool for predicting the presence, severity, and recurrence of AF. Moreover, EAT is increasingly being recognized as a promising therapeutic target. This descriptive review aims to summarize the latest data on the role of EAT in the pathogenesis of AF, the mechanisms through which EAT contributes to atrial remodeling, and the potential of modern imaging techniques for its assessment. This review aims to provide an overview of recent evidence on the role of EAT in the pathogenesis of AF, the mechanisms through which EAT promotes atrial remodeling, and the potential therapeutic strategies.
Keywords: atrial fibrillation, pulmonary vein isolation, left atrial fibrosis, pulmonary vein isolation, epicardial fat, obesity, myocardial fibrosis markers
References
- Colilla S., Crow A., Petkun W., Singer D., Simon T., Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am. J. Cardiol. 2013; 112 (8): 1142–1147. DOI: 10.1016/j.amjcard.2013.05.063
- Benedetti G., Neccia M., Agati L. Direct oral anticoagulants use in elderly patients with non-valvular atrial fibrillation: state of evidence. Minerva Cardioangiologica. 2018; 66 (3): 301–313. DOI: 10.23736/S0026-4725.17.04553-4
- Hindricks G., Potpara T., Dagres N., Arbelo Е., Bax J.J., Blomstrӧm-Lundqvist С. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Russian Journal of Cardiology. 2021; 26 (9): 4701 (in Russ.). DOI: 10.15829/1560-4071-2021-4701
- Staerk L., Sherer J.A., Ko D., Benjamin E.J., Helm R.H. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ Res. 2017; 120: 1501–1517. DOI: 10.1161/CIRCRESAHA.117.309732
- Burstein B., Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 2008; 51 (8): 802–809. DOI: 10.1016/j.jacc.2007.09.064
- Golukhova E.Z., Bulaeva N.I., Alexandrova S.A., Berdibekov B.Sh. Impact of pulmonary vein isolation on the prognosis of patients with atrial fibrillation and heart failure with reduced ejection fraction: an updated systematic review and meta-analysis. Russian Journal of Cardiology. 2024; 29 (2S): 5796 (in Russ.). DOI: 10.15829/1560-4071-2024-5796
- Wang T.J., Parise H., Levy D., D’Agostino R.B., Wolf P.A., Vasan R.S., Benjamin E.J. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004; 292 (20): 2471–2477. DOI: 10.1001/jama.292.20.2471
- Dublin S., French B., Glazer N.L., Wiggins K.L., Lumley T., Psaty B.M. et al. Risk of new-onset atrial fibrillation in relation to body mass index. Arch. Intern. Med. 2006;166 (21): 2322–2328. DOI: 10.1001/archinte.166.21.2322
- Tedrow U.B., Conen D., Ridker P.M., Cook N.R., Koplan B.A., Manson J.E. et al. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (women’s health study). J. Am. Coll. Cardiol. 201; 55 (21): 2319–2327. DOI: 10.1016/j. jacc.2010.02.029
- Chait A., Hartigh L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 2020; 7: 22. DOI: 10.3389/fcvm.2020.00022
- Britton K.A., Fox C.S. Ectopic fat depots and cardiovascular disease. Circulation. 2011; 124 (24): 837–841. DOI: 10.1161/ CIRCULATIONAHA.111.077602
- Aviles R.J., Martin D.O., Apperson-Hansen C., Houghtaling P.L., Rautaharju P., Kronmal R.A. et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003; 108 (24): 3006–3010. DOI: 10.1161/01.CIR.0000103131.70301.4F
- Sacks H.S., Fain J.N. Human epicardial adipose tissue: a review. Am. Heart J. 2007; 153 (6): 907–917. DOI: 10.1016/j.ahj.2007.03.019
- Thanassoulis G., Massaro J.M., O’Donnell C.J., Hoffmann U., Levy D., Ellinor P.T. et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ. Arrhythm. Electrophysiol. 2010; 3 (4): 345–350. DOI: 10.1161/CIRCEP.109.912055
- Tanami Y., Jinzaki M., Kishi S., Matheson M., Vavere A.L., Rochitte C.E. et al. Lack of association between epicardial fat volume and extent of coronary artery calcification, severity of coronary artery disease, or presence of myocardial perfusion abnormalities in a diverse, symptomatic patient population: results from the CORE320 multicenter study. Circ. Cardiovasc. Imaging. 2015; 8 (3): e002676. DOI: 10.1161/CIRCIMAGING.114.002676
- Gaborit B., Jacquier A., Kober F., Abdesselam I., Cuisset T., Boullu-Ciocca S., Emungania O. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J. Am. Coll. Cardiol. 2012; 60 (15): 1381–1389. DOI: 10.1016/j.jacc.2012.06.016
- Shen W., Wang Z., Punyanita M., Lei J., Sinav A., Kral J.G. et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes. Res. 2003; 11 (1): 5–16. DOI: 10.1038/oby.2003.3
- Golukhova E.Z., Gromova O.I., Bulaeva N.I., Arakelyan M.G., Lifanova L. S., Shlyappo M.A. et al. Kardiologiia. 2018; 58 (7): 59–65 (in Russ.). DOI: 10.18087/cardio.2018.7.10145
- Abramenko A.S., Vishnyakova M.V. (Jr.), Shumakov D.V., Vishnyakova M.V., Shekhyan G.G. The application of magnetic resonance imag- ing for the detection and evaluation of left ventricular myocardial fibrosis, determination of the relationship with the tactics of treatment of patients. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2022; 64 (6): 655–662 (in Russ.). DOI: 10.24022/0236-2791-2022-64-6-655-662
- Mahajan R., Kuklik P., Grover S., Brooks A.G., Wong C.X. et al. Cardiovascular magnetic resonance of total and atrial pericardial adipose tissue: a validation study and development of a 3 dimensional pericardial adipose tissue model. J. Cardiovasc. Magn. Reson. 2013; 15 (1): 73. DOI: 10.1186/1532-429X-15-73
- Benjamin E.J., Levy D., Vaziri S.M., D’Agostino R.B., Belanger A.J., Wolf P.A. Independent risk factors for atrial fibrillation in a population- based cohort. The Framingham Heart Study. JAMA. 1994; 271 (11): 840–844. DOI: 10.1001/jama.1994.03510350050036
- Wanahita N., Messerli F.H., Bangalore S., Gami A.S., Somers V.K., Steinberg J.S. Atrial fibrillation and obesity-results of a meta-analysis. Am. Heart J. 2008; 155 (2): 310–315. DOI: 10.1016/j.ahj.2007.10.004
- Tsang T.S., Barnes M.E., Miyasaka Y., Cha S.S., Bailey K.R., Verzosa G.C. et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. Eur. Heart J. 2008; 29 (18): 2227–2233. DOI: 10.1093/eurheartj/ehn324
- Sandhu R.K., Conen D., Tedrow U.B., Fitzgerald K.C., Pradhan A.D., Ridker P.M. et al. Predisposing factors associated with development of persistent compared with paroxysmal atrial fibrillation. J. Am. Heart Assoc. 2014; 3 (3): e000916. DOI: 10.1161/JAHA.114.000916
- Shalov R.Z., Filatov A.G. Comorbid pathology and risk factors in patients with atrial fibrillation. Annaly Aritmologii. 2023; 20 (1): 43–51 (in Russ.). DOI: 10.15275/annaritmol.2023.1.5
- Kluge W.F. Lipomatous hypertrophy of the interatrial septum. Northwest Med. 1969; 68 (1): 25–30. DOI: 10.53347/rID-1588
- Tsang T.S., Barnes M.E., Miyasaka Y., Cha S.S., Bailey K.R., Verzosa G.C. et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. Eur. Heart J. 2008; 29 (18): 2227–2233. DOI: 10.1093/eurheartj/ehn324
- Sandhu R.K., Conen D., Tedrow U.B., Fitzgerald K.C., Pradhan A.D., Ridker P.M. et al. Predisposing factors associated with development of persistent compared with paroxysmal atrial fibrillation. J. Am. Heart Assoc. 2014; 3 (3): e000916. DOI: 10.1161/JAHA.114.000916
- Shalov R.Z., Filatov A.G. Comorbid pathology and risk factors in patients with atrial fibrillation. Annaly Aritmologii. 2023; 20 (1): 43–51 (in Russ.). DOI: 10.15275/annaritmol.2023.1.5
- Kluge W.F. Lipomatous hypertrophy of the interatrial septum. Northwest Med. 1969; 68 (1): 25–30. DOI: 10.53347/rID-1588
- Isner J.M., Swan C.S., Mikus J.P., Carter B.L. Lipomatous hypertrophy of the interatrial septum: in vivo diagnosis. Circulation. 1982; 66 (2): 470–473. DOI: 10.1161/01.cir.66.2.470
- Hutter A.M., Jr, Page D.L. Atrial arrhythmias and lipomatous hypertrophy of the cardiac interatrial septum. Am. Heart J. 1971; 82 (1): 16–21. DOI: 10.1016/0002-8703(71)90156-6
- Page D.L. Lipomatous hypertrophy of the cardiac interatrial septum: its development and probable clinical significance. Hum. Pathol. 1970; 1 (1): 151–163. DOI: 10.1016/s0046-8177(70)80008-9
- Shirani J., Roberts W.C. Clinical, electrocardiographic and morphologic features of massive fatty deposits (“lipomatous hypertrophy”) in the atrial septum. J. Am. Coll. Cardiol. 1993; 22 (1): 226–238. DOI: 10.1016/0735-1097(93)90839-s
- Abed H.S., Samuel C.S., Lau D.H., Kelly D.J., Royce S.G., Alasady M. et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 2013; 10 (1): 90–100. DOI: 10.1016/j.hrthm.2012.08.043
- Golukhova E.Z., Keren M.A., Volkovskaya I.V., Yakhyaeva K.B., Zavalikhina T.V., Avakova S.A. et al. Is there “obesity paradox” in coronary surgery? Effect of body mass index on hospital outcomes and three-year survival after coronary artery bypass grafting. Creative Cardiology. 2023; 17 (2): 247–255 (in Russ.). DOI: 10.24022/1997-3187-2023-17-2-247-255
- Bystrov D.O., Komarov R.N., Shonbin A.N., Afonin B.O., Sorokin R.O., Matsuganov D.A., Danachev A.O. Combined minimally invasive surgical treatment of patients with isolated left anterior descending artery lesion and atrial fibrillation. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2024; 66 (4): 508–514 (in Russ.). DOI: 10.24022/0236-2791-2024-66-4-508-514
- Gaeta M., Bandera F., Tassinari F., Capasso L., Cargnelutti M., Pelissero G. et al. Is epicardial fat depot associated with atrial fibrillation? A systematic review and meta-analysis. Europace. 2017; 19 (5): 747–752. DOI: 10.1093/europace/euw398
- Golukhova E.Z., Bulaeva N.I., Alexandrova S.A., Saparbaev A.A., Abgaryan A.A, Berdibekov B.Sh. Quantification of epicardial adipose tissue by computed tomographic scanning as a prognostic criterion of atrial fibrillation recurrence after catheter ablation. Kardiologiia. 2023; 63 (8): 3–10 (in Russ.). DOI: 10.18087/cardio.2023.8.n2168
- Blinova N.V., Zhernakova Yu.V., Azimova M.O., Azimova M.R., Chazova I.E. Epicardial fat: a new cardiometabolic risk marker, a new therapeutic goal in obese patients. Systemic Hypertension. 2018; 15 (4): 66–69. DOI: 10.26442/2075082X.2018.4.180111
- Lima-Martínez M.M., Paoli M., Rodney M., Balladares N., Contreras M., D’Marco L., Iacobellis G. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine. 2016; 51 (3): 448–455. DOI: 10.1007/s12020-015-0710-y
- Park J.H., Park Y.S., Kim Y.J., Lee I.S., Kim J.H., Lee J.H. et al. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J. Cardiovasc. Ultrasound. 2010; 18 (4): 121–126. DOI: 10.4250/jcu.2010.18.4.121
About Authors
- Anna A. Abgaryan, Postgraduate, Cardiologist; ORCID
- Bektur Sh. Berdibekov, Cand. Med. Sci., Junior Researcher, Cardiologist; ORCID
- Naida I. Bulaeva, Cand. Biol. Sci., Senior Researcher, Cardiologist, Head of Department, Head of Laboratory, Associate Professor; ORCID
- Elena Z. Golukhova, Dr. Med. Sci., Professor, Academician of RAS, Director; ORCID