Microvascular angina due to coronary microvascular dysfunction: pathophysiological mechanisms, diagnostic and treatment aspects

Authors: Afanasyeva M.A., Kubova M.Ch., Bulaeva N.I.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2025-19-2-172-182

For citation: Afanasyeva M.A., Kubova M.Ch., Bulaeva N.I. Microvascular angina due to coronary microvascular dysfunction: pathophysiological mechanisms, diagnostic and treatment aspects. Creative Cardiology. 2025; 19 (2): 172–182 (in Russ.). DOI: 10.24022/1997-3187-2025-19-2-172-182

Received / Accepted:  30.03.2025 / 15.04.2025

Keywords: microvascular angina microvascular dysfunction endothelial dysfunction



Subscribe 🔒

 

Abstract

The diagnosis of myocardial ischemia caused by coronary microvascular dysfunction (CMD), particularly the diagnosis of microvascular angina, has gained more prominence in recent decades. Despite patients with such a diagnosis having a higher risk of adverse cardiovascular events, including myocardial infarction, stroke, the onset and progression of heart failure, and death, there are currently no unified guidelines for the diagnosis and treatment of this nosology, and the management strategy for this group of patients largely remains empirical. The aim of this review is to examine the mechanisms underlying microvascular dysfunction, diagnostic criteria, and treatment methods for myocardial ischemia associated with microvascular dysfunction.

References

  1. Likoff W., Segal B.L., Kasparian H. Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease. N. Engl. J. Med. 1967; 276 (19): 1063–1066. DOI: 10.1056NEJM196705112761904
  2. Kemp H., Vokonas P., Cohn P., Gorlin R. The anginal syndrome associated with normal coronary arteriograms. Report of a six year experience. Am. J. Med. 1973; 54 (6): 735–742. DOI: 10.1016/0002-9343(73)90060-0
  3. Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A. et al. 2013 ESC guidelines on the management of stable coronary artery disease. Eur. Heart J. 34 (38): 2949–3003. DOI: 10.1093/eurheartj/eht296
  4. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2019; 41 (3): 407–477. DOI: 10.1093/eurheartj/ehz425
  5. Canu M., Khouri C., Marliere S., Vautrin E., Piliero N., Ormezzano O. et al. Prognostic significance of severe coronary microvascular dysfunction post-PCI in patients with STEMI: A systematic review and meta-analysis. PLoS One. 2022; 17 (5): e0268330. DOI: 10.1371/journal.pone.0268330
  6. Feenstra R., Boerhou C., Woudstra J., Vink C., Wittekoek M., de Waard G. Presence of coronary endothelial dysfunction, coronary vasospasm, and adenosine-mediated vasodilatory disorders in patients with ischemia and nonobstructive coronary arteries. Circ. Cardiovasc. Interv. 2022; 15 (8): e012017. DOI: 10.1161/CIRCINTERVENTIONS.122.012017
  7. Gdowski M., Murthy V., Doering M., Monroy-Gonzalez A., Slart R., Brown D.L. Association of isolated coronary microvascular dysfunction with mortality and major adverse cardiac events: a systematic review and meta-analysis of aggregate data. J. Am. Heart Assoc. 2020; 9 (9): e014954. DOI: 10.1161/JAHA.119.014954
  8. Tomanek R. Structure–Function of the Coronary Hierarchy. Coronary Vasculature (Springer US). 2013; 59–81. DOI: 10.1007/978-1-4614-4887-7_4
  9. Chen W., Ni M., Huang H., Cong H., Fu X., Gao W. et al. Chinese expert consensus on the diagnosis and treatment of coronary microvascular diseases (2023 Edition). Med. Comm. 2023; 4 (6): e438. DOI: 10.1002/mco2.438
  10. Bulaeva N.I., Golukhova E.Z. Endothelial dysfunction and oxidative stress: role in the development of the cardiovascular system. Creative Cardiology. 2013; 7 (1): 14–22 (in Russ.).
  11. Camici P., Tschöpe C., Di Carli M., Rimoldi O., Van Linthout S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc. Res. 2020; 116 (4): 806–816. DOI: 10.1093/cvr/cvaa023
  12. Guo Z., Yang Z., Song Z., Li Z., Xiao Y., Zhang Y. et al. Inflammation and coronary microvascular disease: relationship, mechanism and treatment. Front. Cardiovasc. Med. 2024; 11: 1280734. DOI: 10.3389/fcvm.2024.1280734
  13. Godo S., Suda A., Takahashi J., Yasuda S., Shimokawa H. Coronary microvascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 2021; 41(5): 1625–1637. DOI: 10.1161/ATVBAHA.121.316025
  14. Vancheri F., Longo G., Vancheri S., Henein M. Coronary microvascular dysfunction. J. Clin. Med. 2020; 9 (9): 2880. DOI: 10.3390/jcm9092880
  15. Reinstadler S., Stiermaier T., Fuernau G., de Waha S., Desch S., Metzler B. et al. The challenges and impact of microvascular injury in ST- elevation myocardial infarction. Expert Rev. Cardiovasc. Ther. 2016; 14 (4): 431–443. DOI: 10.1586/14779072.2016.1135055
  16. Petrosyan K.V., Abrosimov A.V., Goncharova E.S. Assessing coronary blood flow physiology in the modern strategy of coronary artery disease catheterization treatment. Grudnaya i Ser dechno-Sosudistaya Khirurgiya. 2024; 66 (3): 270–281 (in Russ.). DOI: 10.24022/0236-2791-2024-66-3-270-281
  17. Golukhova E.Z., Petrosyan K.V., Abrosimov A.V., Bulaeva N.I., Goncharova E.S., Berdibekov B.Sh. Impact of assessment of fractional flow reserve and instantaneous wave-free ratio on clinical outcomes of percutaneous coronary intervention: a systematic review, meta- analysis and meta-regression analysis. Russian Journal of Cardiology. 2023; 28 (1S): 5325 (in Russ.). DOI: 10.15829/15604071-2023-5325
  18. Aldiwani H., Mahdai S., Alhatemi G., Bairey Merz C. Microvascular angina: diagnosis and management. Eur/ Cardiol. 2021; 16: e46. DOI: 10.15420/ecr.2021.15
  19. Vrints C., Andreotti F., Koskinas K., Rossello X., Adamo M., Ainslie J. et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024; 45 (36): 3415–3537. DOI: 10.1093/eurheartj/ehae177
  20. Ong P., Camici P., Beltrame J., Crea F., Shimokawa H., Sechtem U. et al. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 2018; 250: 16–20. DOI: 10.1016/j.ijcard.2017.08.068
  21. Schroder J., Michelsen M., Mygind N., Suhrs H., Bove K, Bechsgaard D. et al. Coronary flow velocity reserve predicts adverse prognosis in women with angina and no obstructive coronary artery disease: results from the iPOWER study. Eur. Heart J. 2021; 42 (3): 228–239. DOI: 10.1093/eurheartj/ehaa944
  22. Celermajer D., Sorensen K., Gooch V., Spiegelhalter D., Miller O., Sullivan I. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992; 340 (8828): 1111–1115. DOI: 10.1016/0140-6736(92)93147-f
  23. Golukhova E.Z., Aslanidi I.P., Shurupova I.V., Shakhova A.A., Rumyantseva M.G., Trifonova T.A., Surkova N.A. Regional myocardial perfusion abnormalities and reducing myocardial blood flow values obtained during dynamic nitrogen-13 ammonia positron emission tomography in predicting multivessel coronary artery disease. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (2): 161–172.
  24. Golukhova E.Z., Shurupova I.V., Dorofeev A.V., Rychina I.E., Trifonova T.A., Boldyreva K.M. Characteristics of global myocardial blood flow and coronary reserve according to dynamic computed stress tomography in patients with coronary artery disease. Grudnaya I Serdechno-Sosudistaya Khirurgiya. 2024; 66 (5): 655–667 (in Russ.). DOI: 10.24022/0236-2791-2024-66-5-655-667
  25. Murthy V., Naya M., Taqueti V., Foster C., Gaber M., Haine J. et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014; 129 (24): 2518–2527. DOI: 10.1161/CIRCULATIONAHA.113.008507
  26. Zhou W., Lee J., Leung S., Lai A., Lee T., Chiang J. et al. Long-term prognosis of patients with coronary microvascular disease using stress perfusion cardiac magnetic resonance. JACC Cardiovasc. Imaging. 2021; 14 (3): 602–611. DOI: 10.1016/j.jcmg.2020.09.034
  27. Thomson L., Wei J., Agarwal M., Haft-Baradaran A., Shufelt C., Mehta P.K. et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction: A national heart, lung, and blood institute-sponsored study from the women’s ischemia syndrome evaluation. Circ. Cardiovasc. Imaging. 2015; 8 (4): 10.1161/CIRCIMAGING.114.002481 e002481. DOI: 10.1161/CIRCIMAG ING.114.002481
  28. Suzuki S., Kaikita K., Yamamoto E., Jinnouchi H., Tsujita K. Role of acetylcholine spasm provocation test as a pathophysiological assessment in nonobstructive coronary artery disease. Cardiovasc. Interv. Ther. 2021; 36 (1): 52–53. DOI: 10.1007/s12928-020-00720-z
  29. Beltrame J., Crea F., Kaski J. C., Ogawa H., Ong P., Sechtem U. et al. International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 2017; 38 (33): 2565–2568. DOI: 10.1093/eurheartj/ehv351
  30. Suda A., Takahashi J., Hao K., Kikuchi Y., Shindo T., Ikeda S. et al. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. J. Am. Coll. Cardiol. 2019; 74 (19): 2350–2360. DOI: 10.1016/j.jacc.2019.08.1056
  31. Taqueti V. Coronary microvascular dysfunction in vasospastic angina: provocative role for the microcirculation in macrovessel disease prognosis. J. Am. Coll. Cardiol. 2019; 74 (19): 2361–2364. DOI: 10.1016/j.jacc.2019.09.042
  32. Bairey Merz C., Pepine C., Shimokawa H., Berry C. Treatment of coronary microvascular dysfunction. Cardiovasc. Res. 2020; 116 (4): 856–870. DOI: 10.1093/cvr/cvaa006
  33. Sütsch G., Oechslin E., Mayer I., Hess O.M. Effect of diltiazem on coronary flow reserve in patients with microvascular angina. Int. J. Cardiol. 1995; 52 (2): 135–143. DOI: 10.1016/0167-5273(95)02458-9
  34. Janse T., Konst R., de Vos A., Paradies V., Teerenstra S., van den Oord S. et al. Efficacy of diltiazem to improve coronary vasomotor dysfunction in ANOCA: The EDIT-CMD Randomized Clinical Trial. JACC Cardiovasc. Imaging. 2022; 15 (8): 1473–1484. DOI: 10.1016/j.jcmg.2022.03.012
  35. Ling H., Fu S., Xu M., Wang B., Li B., Li Y. et al. Ranolazine for improving coronary microvascular function in patients with nonobstructive coronary artery disease: a systematic review and meta-analysis with a trial sequential analysis of randomized controlled trials. Quant Imaging Med. Surg. 2024; 14 (2): 1451–1465. DOI: 10.21037/qims-23-1029
  36. Kofler T., Hess S., Moccetti F., Pepine C., Attinger A., Wolfrum M. et al. Efficacy of ranolazine for treatment of coronary microvascular dysfunction – a systematic review and meta-analysis of randomized trials. CJC Open. 2020; 3 (1): 101–108. DOI: 10.1016/j.cjco.2020.09.005
  37. Leonova I., Boldueva S., Zakharova O., Gaykovayam L. Trimetazidine improves symptoms and reduces microvascular dysfunction in patients with microvascular angina. Eur. Heart J. 2017; 38 (1): ehx501.P887. DOI: 10.1093/eurheartj/ehx501.P887
  38. Durante W., Behnammanesh G., Peyton K. Effects of sodium-glucose co-transporter 2 inhibitors on vascular cell function and arterial remodeling. Int. J. Mol. Sci. 2021; 22 (16): 8786. DOI: 10.3390/ijms22168786
  39. Peyton K., Behnammanesh G., Durante G., Durante W. Canagliflozin inhibits human endothelial cell inflammation through the induction of heme oxygenase-1. Int. J. Mol. Sci. 2022; 23 (15): 8777. DOI: 10.3390/ijms23158777
  40. Shin E., Lee J., Yoo S., Park Y., Hong Y., Kim M.H. et al. A randomised, multicentre, double blind, placebo controlled trial to evaluate the efficacy and safety of cilostazol in patients with vasospastic angina. Heart. 2014; 100 (19): 1531–1536. DOI: 10.1136/heartjnl-2014-305986
  41. Ohyama K., Matsumoto Y., Takanami K., Ota H., Nishimiya K., Sugisawa J. et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J. Am. Coll. Cardiol. 2018; 71 (4): 414–425. DOI: 10.1016/j.jacc.2017.11.046
  42. Mohri M., Shimokawa H., Hirakawa Y., Masumoto A., Takeshita A. Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J. Am. Coll. Cardiol. 2003; 41 (1): 15–19. DOI: 10.1016/s0735-1097(02)02632-3
  43. Alieva A.M., Chirkova N.N., Pinchuk T.V., Andreeva O.N., Pivovarov V.U. Endothelines and cardiovascular pathology. Russian Journal of Cardiology. 2014; 11: 83–87 (in Russ.). DOI: 10.15829/1560-4071-2014-11-83-87
  44. Reriani M., Raichlin E., Prasad A., Mathew V., Pumper G., Nelson R. et al. Long-term administration of endothelin receptor antagonist improves coronary endothelial function in patients with early atherosclerosis. Circulation. 2010; 122 (10): 958–966. DOI: 10.1161/CIRCULATIONAHA.110.967406
  45. Ikonomidis I., Lekakis J., Nikolaou M., Paraskevaidis I., Andreadou I., Kaplanoglou T. et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008; 117 (20): 2662–2669. DOI: 10.1161/CIRCULATIONAHA.107.731877
  46. Ridker P., Everett B., Thuren T., MacFadyen J., Chang W., Ballantyne C. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 377 (12): 1119–1131. DOI: 10.1056/NEJMoa1707914
  47. Deussen A., Ohanyan V., Jannasch A., Yin L., Chilian W. Mechanisms of metabolic coronary flow regulation. J. Mol. Cell. Cardiol. 2012; 52 (4): 794–801. DOI: 10.1016/j.yjmcc.2011.10.001
  48. Crea F., Gaspardone A., Araujo L., Da Silva R., Kaski J. C., Davies G., Maseri A. Effects of aminophylline on cardiac function and regional myocardial perfusion: implications regarding its antiischemic action. Am. Heart J. 1994; 127 (4 Pt 1): 817–824. DOI: 10.1016/0002-8703(94)90548-7

About Authors

  • Margarita A. Afanasyeva, Resident Physician, Cardiologist; ORCID
  • Maida Ch. Kubova, Researcher Cardiologist; ORCID
  • Naida I. Bulaeva, Cardiologist, Сand. Biol. Sci., Head of the Department of coordination and support of research activities; ORCID

Chief Editor

Elena Z. Golukhova, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery


Sort by