Microvascular angina due to coronary microvascular dysfunction: pathophysiological mechanisms, diagnostic and treatment aspects
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Afanasyeva M.A., Kubova M.Ch., Bulaeva N.I. Microvascular angina due to coronary microvascular dysfunction: pathophysiological mechanisms, diagnostic and treatment aspects. Creative Cardiology. 2025; 19 (2): 172–182 (in Russ.). DOI: 10.24022/1997-3187-2025-19-2-172-182
Received / Accepted: 30.03.2025 / 15.04.2025
Keywords: microvascular angina microvascular dysfunction endothelial dysfunction
Abstract
The diagnosis of myocardial ischemia caused by coronary microvascular dysfunction (CMD), particularly the diagnosis of microvascular angina, has gained more prominence in recent decades. Despite patients with such a diagnosis having a higher risk of adverse cardiovascular events, including myocardial infarction, stroke, the onset and progression of heart failure, and death, there are currently no unified guidelines for the diagnosis and treatment of this nosology, and the management strategy for this group of patients largely remains empirical. The aim of this review is to examine the mechanisms underlying microvascular dysfunction, diagnostic criteria, and treatment methods for myocardial ischemia associated with microvascular dysfunction.References
- Likoff W., Segal B.L., Kasparian H. Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease. N. Engl. J. Med. 1967; 276 (19): 1063–1066. DOI: 10.1056NEJM196705112761904
- Kemp H., Vokonas P., Cohn P., Gorlin R. The anginal syndrome associated with normal coronary arteriograms. Report of a six year experience. Am. J. Med. 1973; 54 (6): 735–742. DOI: 10.1016/0002-9343(73)90060-0
- Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A. et al. 2013 ESC guidelines on the management of stable coronary artery disease. Eur. Heart J. 34 (38): 2949–3003. DOI: 10.1093/eurheartj/eht296
- Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2019; 41 (3): 407–477. DOI: 10.1093/eurheartj/ehz425
- Canu M., Khouri C., Marliere S., Vautrin E., Piliero N., Ormezzano O. et al. Prognostic significance of severe coronary microvascular dysfunction post-PCI in patients with STEMI: A systematic review and meta-analysis. PLoS One. 2022; 17 (5): e0268330. DOI: 10.1371/journal.pone.0268330
- Feenstra R., Boerhou C., Woudstra J., Vink C., Wittekoek M., de Waard G. Presence of coronary endothelial dysfunction, coronary vasospasm, and adenosine-mediated vasodilatory disorders in patients with ischemia and nonobstructive coronary arteries. Circ. Cardiovasc. Interv. 2022; 15 (8): e012017. DOI: 10.1161/CIRCINTERVENTIONS.122.012017
- Gdowski M., Murthy V., Doering M., Monroy-Gonzalez A., Slart R., Brown D.L. Association of isolated coronary microvascular dysfunction with mortality and major adverse cardiac events: a systematic review and meta-analysis of aggregate data. J. Am. Heart Assoc. 2020; 9 (9): e014954. DOI: 10.1161/JAHA.119.014954
- Tomanek R. Structure–Function of the Coronary Hierarchy. Coronary Vasculature (Springer US). 2013; 59–81. DOI: 10.1007/978-1-4614-4887-7_4
- Chen W., Ni M., Huang H., Cong H., Fu X., Gao W. et al. Chinese expert consensus on the diagnosis and treatment of coronary microvascular diseases (2023 Edition). Med. Comm. 2023; 4 (6): e438. DOI: 10.1002/mco2.438
- Bulaeva N.I., Golukhova E.Z. Endothelial dysfunction and oxidative stress: role in the development of the cardiovascular system. Creative Cardiology. 2013; 7 (1): 14–22 (in Russ.).
- Camici P., Tschöpe C., Di Carli M., Rimoldi O., Van Linthout S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc. Res. 2020; 116 (4): 806–816. DOI: 10.1093/cvr/cvaa023
- Guo Z., Yang Z., Song Z., Li Z., Xiao Y., Zhang Y. et al. Inflammation and coronary microvascular disease: relationship, mechanism and treatment. Front. Cardiovasc. Med. 2024; 11: 1280734. DOI: 10.3389/fcvm.2024.1280734
- Godo S., Suda A., Takahashi J., Yasuda S., Shimokawa H. Coronary microvascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 2021; 41(5): 1625–1637. DOI: 10.1161/ATVBAHA.121.316025
- Vancheri F., Longo G., Vancheri S., Henein M. Coronary microvascular dysfunction. J. Clin. Med. 2020; 9 (9): 2880. DOI: 10.3390/jcm9092880
- Reinstadler S., Stiermaier T., Fuernau G., de Waha S., Desch S., Metzler B. et al. The challenges and impact of microvascular injury in ST- elevation myocardial infarction. Expert Rev. Cardiovasc. Ther. 2016; 14 (4): 431–443. DOI: 10.1586/14779072.2016.1135055
- Petrosyan K.V., Abrosimov A.V., Goncharova E.S. Assessing coronary blood flow physiology in the modern strategy of coronary artery disease catheterization treatment. Grudnaya i Ser dechno-Sosudistaya Khirurgiya. 2024; 66 (3): 270–281 (in Russ.). DOI: 10.24022/0236-2791-2024-66-3-270-281
- Golukhova E.Z., Petrosyan K.V., Abrosimov A.V., Bulaeva N.I., Goncharova E.S., Berdibekov B.Sh. Impact of assessment of fractional flow reserve and instantaneous wave-free ratio on clinical outcomes of percutaneous coronary intervention: a systematic review, meta- analysis and meta-regression analysis. Russian Journal of Cardiology. 2023; 28 (1S): 5325 (in Russ.). DOI: 10.15829/15604071-2023-5325
- Aldiwani H., Mahdai S., Alhatemi G., Bairey Merz C. Microvascular angina: diagnosis and management. Eur/ Cardiol. 2021; 16: e46. DOI: 10.15420/ecr.2021.15
- Vrints C., Andreotti F., Koskinas K., Rossello X., Adamo M., Ainslie J. et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024; 45 (36): 3415–3537. DOI: 10.1093/eurheartj/ehae177
- Ong P., Camici P., Beltrame J., Crea F., Shimokawa H., Sechtem U. et al. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 2018; 250: 16–20. DOI: 10.1016/j.ijcard.2017.08.068
- Schroder J., Michelsen M., Mygind N., Suhrs H., Bove K, Bechsgaard D. et al. Coronary flow velocity reserve predicts adverse prognosis in women with angina and no obstructive coronary artery disease: results from the iPOWER study. Eur. Heart J. 2021; 42 (3): 228–239. DOI: 10.1093/eurheartj/ehaa944
- Celermajer D., Sorensen K., Gooch V., Spiegelhalter D., Miller O., Sullivan I. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992; 340 (8828): 1111–1115. DOI: 10.1016/0140-6736(92)93147-f
- Golukhova E.Z., Aslanidi I.P., Shurupova I.V., Shakhova A.A., Rumyantseva M.G., Trifonova T.A., Surkova N.A. Regional myocardial perfusion abnormalities and reducing myocardial blood flow values obtained during dynamic nitrogen-13 ammonia positron emission tomography in predicting multivessel coronary artery disease. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (2): 161–172.
- Golukhova E.Z., Shurupova I.V., Dorofeev A.V., Rychina I.E., Trifonova T.A., Boldyreva K.M. Characteristics of global myocardial blood flow and coronary reserve according to dynamic computed stress tomography in patients with coronary artery disease. Grudnaya I Serdechno-Sosudistaya Khirurgiya. 2024; 66 (5): 655–667 (in Russ.). DOI: 10.24022/0236-2791-2024-66-5-655-667
- Murthy V., Naya M., Taqueti V., Foster C., Gaber M., Haine J. et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014; 129 (24): 2518–2527. DOI: 10.1161/CIRCULATIONAHA.113.008507
- Zhou W., Lee J., Leung S., Lai A., Lee T., Chiang J. et al. Long-term prognosis of patients with coronary microvascular disease using stress perfusion cardiac magnetic resonance. JACC Cardiovasc. Imaging. 2021; 14 (3): 602–611. DOI: 10.1016/j.jcmg.2020.09.034
- Thomson L., Wei J., Agarwal M., Haft-Baradaran A., Shufelt C., Mehta P.K. et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction: A national heart, lung, and blood institute-sponsored study from the women’s ischemia syndrome evaluation. Circ. Cardiovasc. Imaging. 2015; 8 (4): 10.1161/CIRCIMAGING.114.002481 e002481. DOI: 10.1161/CIRCIMAG ING.114.002481
- Suzuki S., Kaikita K., Yamamoto E., Jinnouchi H., Tsujita K. Role of acetylcholine spasm provocation test as a pathophysiological assessment in nonobstructive coronary artery disease. Cardiovasc. Interv. Ther. 2021; 36 (1): 52–53. DOI: 10.1007/s12928-020-00720-z
- Beltrame J., Crea F., Kaski J. C., Ogawa H., Ong P., Sechtem U. et al. International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 2017; 38 (33): 2565–2568. DOI: 10.1093/eurheartj/ehv351
- Suda A., Takahashi J., Hao K., Kikuchi Y., Shindo T., Ikeda S. et al. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. J. Am. Coll. Cardiol. 2019; 74 (19): 2350–2360. DOI: 10.1016/j.jacc.2019.08.1056
- Taqueti V. Coronary microvascular dysfunction in vasospastic angina: provocative role for the microcirculation in macrovessel disease prognosis. J. Am. Coll. Cardiol. 2019; 74 (19): 2361–2364. DOI: 10.1016/j.jacc.2019.09.042
- Bairey Merz C., Pepine C., Shimokawa H., Berry C. Treatment of coronary microvascular dysfunction. Cardiovasc. Res. 2020; 116 (4): 856–870. DOI: 10.1093/cvr/cvaa006
- Sütsch G., Oechslin E., Mayer I., Hess O.M. Effect of diltiazem on coronary flow reserve in patients with microvascular angina. Int. J. Cardiol. 1995; 52 (2): 135–143. DOI: 10.1016/0167-5273(95)02458-9
- Janse T., Konst R., de Vos A., Paradies V., Teerenstra S., van den Oord S. et al. Efficacy of diltiazem to improve coronary vasomotor dysfunction in ANOCA: The EDIT-CMD Randomized Clinical Trial. JACC Cardiovasc. Imaging. 2022; 15 (8): 1473–1484. DOI: 10.1016/j.jcmg.2022.03.012
- Ling H., Fu S., Xu M., Wang B., Li B., Li Y. et al. Ranolazine for improving coronary microvascular function in patients with nonobstructive coronary artery disease: a systematic review and meta-analysis with a trial sequential analysis of randomized controlled trials. Quant Imaging Med. Surg. 2024; 14 (2): 1451–1465. DOI: 10.21037/qims-23-1029
- Kofler T., Hess S., Moccetti F., Pepine C., Attinger A., Wolfrum M. et al. Efficacy of ranolazine for treatment of coronary microvascular dysfunction – a systematic review and meta-analysis of randomized trials. CJC Open. 2020; 3 (1): 101–108. DOI: 10.1016/j.cjco.2020.09.005
- Leonova I., Boldueva S., Zakharova O., Gaykovayam L. Trimetazidine improves symptoms and reduces microvascular dysfunction in patients with microvascular angina. Eur. Heart J. 2017; 38 (1): ehx501.P887. DOI: 10.1093/eurheartj/ehx501.P887
- Durante W., Behnammanesh G., Peyton K. Effects of sodium-glucose co-transporter 2 inhibitors on vascular cell function and arterial remodeling. Int. J. Mol. Sci. 2021; 22 (16): 8786. DOI: 10.3390/ijms22168786
- Peyton K., Behnammanesh G., Durante G., Durante W. Canagliflozin inhibits human endothelial cell inflammation through the induction of heme oxygenase-1. Int. J. Mol. Sci. 2022; 23 (15): 8777. DOI: 10.3390/ijms23158777
- Shin E., Lee J., Yoo S., Park Y., Hong Y., Kim M.H. et al. A randomised, multicentre, double blind, placebo controlled trial to evaluate the efficacy and safety of cilostazol in patients with vasospastic angina. Heart. 2014; 100 (19): 1531–1536. DOI: 10.1136/heartjnl-2014-305986
- Ohyama K., Matsumoto Y., Takanami K., Ota H., Nishimiya K., Sugisawa J. et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J. Am. Coll. Cardiol. 2018; 71 (4): 414–425. DOI: 10.1016/j.jacc.2017.11.046
- Mohri M., Shimokawa H., Hirakawa Y., Masumoto A., Takeshita A. Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J. Am. Coll. Cardiol. 2003; 41 (1): 15–19. DOI: 10.1016/s0735-1097(02)02632-3
- Alieva A.M., Chirkova N.N., Pinchuk T.V., Andreeva O.N., Pivovarov V.U. Endothelines and cardiovascular pathology. Russian Journal of Cardiology. 2014; 11: 83–87 (in Russ.). DOI: 10.15829/1560-4071-2014-11-83-87
- Reriani M., Raichlin E., Prasad A., Mathew V., Pumper G., Nelson R. et al. Long-term administration of endothelin receptor antagonist improves coronary endothelial function in patients with early atherosclerosis. Circulation. 2010; 122 (10): 958–966. DOI: 10.1161/CIRCULATIONAHA.110.967406
- Ikonomidis I., Lekakis J., Nikolaou M., Paraskevaidis I., Andreadou I., Kaplanoglou T. et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008; 117 (20): 2662–2669. DOI: 10.1161/CIRCULATIONAHA.107.731877
- Ridker P., Everett B., Thuren T., MacFadyen J., Chang W., Ballantyne C. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 377 (12): 1119–1131. DOI: 10.1056/NEJMoa1707914
- Deussen A., Ohanyan V., Jannasch A., Yin L., Chilian W. Mechanisms of metabolic coronary flow regulation. J. Mol. Cell. Cardiol. 2012; 52 (4): 794–801. DOI: 10.1016/j.yjmcc.2011.10.001
- Crea F., Gaspardone A., Araujo L., Da Silva R., Kaski J. C., Davies G., Maseri A. Effects of aminophylline on cardiac function and regional myocardial perfusion: implications regarding its antiischemic action. Am. Heart J. 1994; 127 (4 Pt 1): 817–824. DOI: 10.1016/0002-8703(94)90548-7