Effect of body weight reduction on cardiac remodeling indicators and atrial fibrillation recurrence in obese patients
Authors:
Company:
1 Russian National Research Medical University named after N.I. Pirogov, Moscow, Russian Federation
2 City Clinical Hospital № 1 named after N.I. Pirogov, Moscow, Russian Federation
3 City Clinical Hospital named after V.P. Demikhov, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Original articles
DOI:
For citation: Bogdanov A.R., Romanova T.A., Fedulaev Yu.N. Effect of body weight reduction on cardiac remodeling indicators and atrial fibrillation recurrence in obese patients. Creative Cardiology. 2025; 19 (2): 229–240 (in Russ.). DOI: 10.24022/1997-3187-2025- 19-2-229-240
Received / Accepted: 17.03.2025 / 07.04.2025
Keywords: atrial fibrillation obesity cardiac remodeling
Abstract
Objective. To evaluate the effect of body weight (BW) reduction against the background of personalized diet therapy (DT) on cardiac remodeling indices, the frequency of atrial fibrillation (AF) paroxysms, hospitalizations due to AF and cardiovascular events (CVE) in patients with obesity.
Material and methods. A randomized, controlled, prospective cohort study included 100 patients with grade III obesity and paroxysmal AF, divided into 2 groups of 50 patients. The main group (MG) received a hypocaloric diet, the control group (CG) – a eucaloric diet. After 3 and 6 months, the dynamics of bioimedansometry parameters, blood pressure (BP), echocardiography, frequency of AF paroxysms, hospitalizations due to AF, CVE (acute myocardial infarction, acute cerebrovascular insufficiency) and mortality due to cardiovascular causes were assessed.
Results. In the MG, over 6 months of DT, a decrease in BM was achieved in men by 16.5% (p < 0.001), in women – by 16.8% (p < 0.001). The following was revealed: a decrease in the left ventricular end-diastolic dimension (LVEDD) by 18.8% (p<0.01), left ventricular end-systolic dimension (LVED) by 16.9% (p<0.005), end-diastolic volume (EDV) index by 18.6% (p<0.01), end-systolic volume (ESV) index by 16.6% (p<0.005), effective mitral regurgitation area (EROA) by 35.8% (p<0.001), left atrial anterior-posterior dimension (LAA) by 11.93% (p<0.005), left atrial (LA) volume index by 19.3% (p<0.001), and pulmonary artery systolic pressure (PASP) by 25.7% (p<0.001). The proportion of patients with E>A increased from 12.6% to 24.9% (p=0.03); the E/e’ ratio decreased from 13.4 to 10.1 units (p=0.034). The frequency of AF paroxysms decreased by 52.2%, hospitalizations by 44.6%, and CVS by 33.3%.
Conclusion. DT aimed at reducing BW in individuals with AF and obesity allows for reverse cardiac remodeling, a decrease in the frequency of AF recurrences, hospitalizations, and CVE.
References
- Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2019 update: a report from the American Heart Association. Circulation. 2019; 139: 56–528. DOI: 10.1161/CIR.0000000000000659
- Lip G.Y.H., Coca A., Kahan T., Boriani G., Manolis A.S., Olsen M.H., et al. Hypertension and cardiac arrhythmias: a consensus document from the European Heart Rhythm Association (EHRA) and ESC Council on Hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologia (SOLEACE). Eur. Heart J. Cardiovasc. Pharmacother. 2017; 19: 891–911. DOI: 10.1093/ehjcvp/pvx019
- Aune D., Feng T., Schlesinger S., Janszky I., Norat T., Riboli E. Diabetes mellitus, blood glucose and the risk of atrial fibrillation: a systematic review and meta-analysis of cohort studies. J. Diab. Complicat. 2018; 32 (5): 501–511. DOI: 10.1016/j.jdiacomp.2018.02.004
- Hobbelt A.H., Siland J.E., Geelhoed B., Van Der Harst P., Hillege H.L., Van Gelder I.C., Rienstra M. Clinical, biomarker, and genetic predictors of specific types of atrial fibrillation in a community-based cohort: data of the PREVEND study. Europace. 2017; 19: 226–232. DOI: 10.1093/europace/euw016
- Boriani G., Savelieva I., Dan G.A., Deharo J.C., Ferro C., Israel C.W., et al. Chronic kidney disease in patients with cardiac rhythm disturbances or implantable electrical devices: clinical significance and implications for decision making – a position paper of the European Heart Rhythm Association endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. EP Europace. 2015; 17 (8): 1169–1196. DOI: 10.1093/europace/euv202
- Golukhova E.Z., Gromova O.I., Bulaeva N.I., Arakelyan M.G., Lifanova L.S., Shlyappo M.A. et al. Epicardial fat and atrial fibrillation: the role of profibrinogenic mediators. Kardiologiia. 2018; 58 (7): 59–65 (in Russ.).
- Golukhova E. Z., Maliovanova I. M., Kakuchaya T.T. Cardiac arrhythmias in patients with obstructive sleep apnoea: clinical features, diagnosis and treatment. Annaly aritmologii. 2006; 3 (2): 66–71 (in Russ.). DOI: 10.18087/cardio.2018.7.10145
- Kruszewska J., Cudnoch-Jedrzejewska A., Czarzasta K. Remodeling and fibrosis of the cardiac muscle in the course of obesity – pathogenesis and involvement of the extracellular matrix. Int. J. Mol. Sci. 2022; 23 (8): 4195. DOI: 10.3390/ijms23084195
- Tadic M., Cuspidi C. Obesity and heart failure with preserved ejection fraction: a paradox or something else? Heart Fail. Rev. 2019; 24 (3): 379–385. DOI: 10.1007/s10741-018-09766-x
- Ebong I.A., Goff D.C., Rodriguez C.J., Chen H., Bertoni A.G. Mechanisms of heart failure in obesity. Obes. Res. Clin. Pract. 2014; 8 (6): 540–554. DOI: 10.1016/j.orcp.2013.12.005
- Alpert M.A., Karthikeyan K., Abdullah O., Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog. Cardiovasc. Dis. 2018; 61 (2): 114–123. DOI: 10.1016/j.pcad.2018.07.012
- Alpert M.A., Omran J., Bostick B.P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function. Curr. Obes. Rep. 2016; 5 (4): 424–434. DOI: 10.1007/s13679-016-0235-6 > ChatGPT4 | Midjourney:
- Stritzke J., Markus M.R.P., Duderstadt S., Lieb W., Luchner A., Döring A. et al. The aging process of the heart: obesity is the main risk factor for left atrial enlargement during aging. The MONICA/KORA (Monitoring of Trends and Determinations in Cardiovascular Disease/ Cooperative Research in the Region of Augsburg) Study. J. Am. Coll. Cardiol. 2009; 54 (21): 1982–1989. DOI: 10.1016/j.jacc.2009.07.034
- Ackermann R.T., Edelstein S.L., Narayan K.M., Zhang P., Engelgau M.M., Herman W.H., Marrero D.G. Diabetes prevention program research group. Changes in health state utilities with changes in body mass in the Diabetes Prevention Program. Obesity (Silver Spring). 2009; 17 (12): 2176–2181. DOI: 10.1038/oby.2009.114
- Apovian C.M. What’s new about the new US obesity guidelines? Curr. Obes. Rep. 2014; 3 (2): 147–149. DOI: 10.1007/s13679-014-0103-1
- Moore L., Fan D., Basu R., Kandalam V., Kassiri Z. Tissue Inhibitor of Metalloproteinases (TIMPs) in Heart Failure. Heart Fail. Rev. 2012; 17 (4–5): 693–706. DOI: 10.1007/s10741-011-9266-y
- Ebong I.A., Goff D.C., Rodriguez C.J., Chen H., Bertoni A.G. Mechanisms of heart failure in obesity. Obes. Res. Clin. Pract. 2014; 8 (6): 540–554. DOI: 10.1016/j.orcp.2013.12.005
- Alpert M.A., Karthikeyan K., Abdullah O., Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog. Cardiovasc. Dis. 2018; 61 (2): 114–123. DOI: 10.1016/j.pcad.2018.07.012
- Alpert M.A., Omran J., Bostick B.P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function. Curr. Obes. Rep. 2016; 5 (4): 424–434. DOI: 10.1007/s13679-016-0235-6
- Opie L.H., Commerford P.J., Gersh B.J., Pfeffer M.A. Controversies in ventricular remodelling. Lancet. 2006; 367 (9507): 356–367. DOI: 10.1016/S0140-6736(06)68074-4
- Lauer M.S., Anderson K.M, Kannel W.B., Levy D. The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA. 1991; 266 (2): 231–236. DOI: 10.1001/jama.1991.03470020057032
- Pascual M., Pascual D.A., Soria F., Vicente T., Hernández A.M., Tébar F.J., Valdés M. Effects of isolated obesity on systolic and diastolic left ventricular function. Heart. 2003; 89 (10): 1152–1156. DOI: 10.1136/heart.89.10.1152
- Krebber M.M., van Dijk C.G.M., Vernooij R.W.M., Brandt M.M., Emter C.A., Rau C.D. et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in extracellular matrix remodeling during left ventricular diastolic dysfunction and heart failure with preserved ejection fraction: a systematic review and meta-analysis. Int. J. Mol. Sci. 2020; 21 (18): 6742. DOI: 10.3390/ijms21186742
- Stritzke J., Markus M.R.P., Duderstadt S., Lieb W., Luchner A., Döring A. et al. The aging process of the heart: obesity is the main risk factor for left atrial enlargement during aging. The MONICA/KORA (Monitoring of Trends and Determinations in Cardiovascular Disease/ Cooperative Research in the Region of Augsburg) Study. J. Am. Coll. Cardiol. 2009; 54 (21): 1982–1989. DOI: 10.1016/j.jacc.2009.07.034
- Ackermann R.T., Edelstein S.L., Narayan K.M., Zhang P., Engelgau M.M., Herman W.H., Marrero D.G. Diabetes prevention program research group. Changes in health state utilities with changes in body mass in the Diabetes Prevention Program. Obesity (Silver Spring). 2009; 17 (12): 2176–2181. DOI: 10.1038/oby.2009.114
- Apovian C.M. What’s new about the new US obesity guidelines? Curr. Obes. Rep. 2014; 3 (2): 147–149. DOI: 10.1007/s13679-014-0103-1
- Moore L., Fan D., Basu R., Kandalam V., Kassiri Z. Tissue Inhibitor of Metalloproteinases (TIMPs) in Heart Failure. Heart Fail. Rev. 2012; 17 (4–5): 693–706. DOI: 10.1007/s10741-011-9266-y