Genetic aspects of multifocal atherosclerosis
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Buziashvili Yu.I., Koksheneva I.V., Timerbulatova T.R. Genetic aspects of multifocal atherosclerosis. Creative Cardiology. 2025; 19 (3): 264–271 (in Russ.). DOI: 10.24022/1997-3187-2025-19-3-264-271
Received / Accepted: 30.01.2025 / 21.07.2025
Keywords: multifocal atherosclerosis genetic variability variability of endothelial mechanosensitive receptor genes
Abstract
The complex and multifactorial pathophysiology of multifocal atherosclerosis requires the integration of various clinical, molecular genetic, and histochemical methods to gain insights into the diverse aspects, molecular pathways, and cellular functions involved in atherogenesis.
The article reviews published studies on the genetic mechanisms of multifocal atherosclerosis. Research in the field of genetics is important for defining the biological and pathophysiological mechanisms of multifocal atherosclerosis. These approaches using high-throughput sequencing technologies and high-tech computational tools provide unprecedented opportunities not only to better understand the pathophysiology of atherosclerosis development in a holistic and integrative
manner, but also to identify new molecular and diagnostic targets for the therapy of atherosclerotic diseases. A deeper understanding of how genetic variability affects susceptibility to multifocal atherosclerosis may help in the development of new therapeutic agents for the treatment of this complex disease.
References
- Boсkeria L.A., Boсkeria O.L., Zhuginisov D.Sh., Koasari A.K., Yurkulieva G.A., Razhivina A.V. Staged or one-stage surgical treatment of lesions of the brachiocephalic and coronary vessels. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2021; 22 (4): 452–458 (in Russ.). DOI: 10.24022/1810-0694-2021-22-4-452-458
- Keren M.A., Sheykina N.A., Sigaev I.Yu., Merzlyakov V.Yu., Alshibaya M.D., Arakelyan V.S. et al. Outcomes of coronary and carotid revascularization depending on the implemented surgical tactics: the experience of one center. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (6): 713–721 (in Russ.). DOI: 10.24022/0236-2791-2023-65-6-713-721
- Buziashvili Yu.I., Koksheneva I.V., Ioshina V.I., Matskeplishvili S.T. Clinical genetics of atherosclerosis. Moscow; 2025 (in Russ.).
- Mizuguchi T., Matsumoto N. Recent progress in genetics of Marfan syndrome and Marfan-associated disorders. J. Hum. Genet. 2007; 52 (1): 1–12. DOI: 10.1007/s10038-006-0078-1
- Meijer W.T., Grobbee D.E., Hunink M.G., Hofman A., Hoes A.W. Determinants of peripheral arterial disease in the elderly: the Rotterdam study. Arch. Intern. Med. 2000; 160 (19): 2934–2938. DOI: 10.1001/archinte.160.19.2934
- Wu F.Y., Li C.I., Liao L.N., Liu C.S., Lin W.Y., Lin C.H. et al. Evaluation of single nucleotide polymorphisms in 6 candidate genes and carotid intima-media thickness in community-dwelling residents. PLoS One. 2020; 15 (3): e0230715. DOI: 10.1371/journal.pone.0230715
- Kwok C.Y.T., Poon Y.K.P., Chook P., Guo D.S., Lin C.Q., Yin Y.H. et al. A potential strategy for atherosclerosis preventi- on in modernizing China – Hyperhomocysteinemia, MTHFR C677T Polymorphism and Air Pollution (PM2.5) on Atherogenesis in Chinese Adults. Nutr. Health. Aging. 2023; 27 (2): 134–141. DOI: 10.1007/s12603-023-1889-x
- Hassan M.O., Duarte R., Dickens C., Dix-Peek T., Naidoo S., Vachiat A. et al. Interleukin-6 gene polymorhisms and interleukin-6 levels are associated with atherosclerosis in CKD patients. Clin. Nephrol. 2020; 93 (1): 82–86. DOI: 10.5414/CNP92S114
- Buziashvili Yu.I., Koksheneva I.V., Matskeplishvili S.T., Petrosyan K.V., Ioshina V.I., Zakaraya I.T. et al. The influence of genetic polymorphism of the chemokine receptor CCR5 on the clinical course of coronary heart disease and the results of percutaneous coronary interventions. Cardiology and Cardiovascular Surgery. 2024; 17 (4): 401–409 (in Russ.). DOI: 10.17116/kardio202316041374
- Nepal G., Yadav J.K., Kong Y. Association between K469E polymorphism of ICAM-1 gene and susceptibility of ischemic stroke: an updated meta-analysis. Mol. Genet. Genomic. Med. 2019; 7 (7): e00784. DOI: 10.1002/mgg3.784
- Chen Y., Chen L., Zhou Q. Gen etic association between eNOS gene polymorphisms and risk of carotid atherosclerosis: a meta-analysis. Herz. 2021; 46 (Suppl. 2): 253–264. DOI: 10.1007/s00059-020-04995-z
- Shapiro M.D., Fazio S. PCSK9 and atherosclerosis – lipids and beyond. J. Atheroscler. Thromb. 2017; 24 (5): 462–472. DOI: 10.5551/jat. RV17003
- Zintzaras E., Zdoukopoulos N. A field synopsis and meta-analysis of genetic association studies in peripheral arterial disease: the CUMAGAS- PAD database. Am. J. Epidemiol. 2009; 170 (1): 1–11. DOI: 10.1093/aje/kwp094
- Sabino A., Fernandes A.P., Lima L.M., Ribeiro D.D., Sousa M.O., de Castro Santos M.E. et al. Polymorphism in the methylenetetrahydrofolate reductase (C677T) gene and homocysteine levels: a comparison in Brazilian patients with coronary arterial disease, ischemic stroke and peripheral arterial obstructive disease. J. Thromb. Thrombolysis. 2009; 27 (1): 82–87. DOI: 10.1007/s11239-007-0172-z
- Flex A., Gaetani E., Angelini F., Sabusco A., Chillà C., Straface G. et al. Pro-inflammatory genetic profiles in subjects with peripheral arterial occlusive disease and critical limb ischemia. J. Intern. Med. 2007; 262 (1): 124–130. DOI: 10.1111/j.1365-2796.2007.01791.x
- Gudmundsson G., Matthiasson S.E., Arason H., Johannsson H., Runarsson F., Bjarnason H. et al. Localization of a gene for peripheral arterial occlusive disease to chromosome 1p31. Am. J. Hum. Genet. 2002; 70 (3): 586–592. DOI: 10.1086/339251
- Mehta N.N. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Circ. Cardiovasc. Genet. 2011; 4 (3): 327–329. DOI: 10.1161/CIRCGENETICS.111.960443
- Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007; 316 (5830): 1491–1493. DOI: 10.1126/science.1142842
- Helgadottir A., Thorleifsson G., Magnusson K.P., Grétarsdottir S., Steinthorsdottir V., Manolescu A. et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet. 2008; 40 (2): 217–224. DOI: 10.1038/ng.72
- Björck H.M., Länne T., Alehagen U., Persson K., Rundkvist L., Hamsten A. et al. Association of genetic variation on chromosome 9p21.3 and arterial stiffness. J. Intern. Med. 2009; 265 (3): 373–381. DOI: 10.1111/j.1365-2796.2008.02020.x
- Cluett C., McDermott M.M., Guralnik J., Ferrucci L., Bandinelli S., Miljkovic I. et al. The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ. Cardiovasc. Genet. 2009; 2 (4): 347–353. DOI: 10.1161/CIRCGENETICS.108.825935
- Thorgeirsson T.E., Geller F., Sulem P., Rafnar T., Wiste A., Magnusson K.P. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008; 452 (7187): 638–642. DOI: 10.1038/nature06846
- Barvitenko N., Ashrafuzzaman M., Lawen A., Skverchinskaya E., Saldanha C., Manca A. et al. Endothelial cell plasma membrane biomechanics mediates effects of pro-inflammatory factors on endothelial mechanosensors: vicious circle formation in atherogenic inflammation. Membranes (Basel). 2022; 12 (2): 205. DOI: 10.3390/membranes12020205
- Hartman E.M.J., De Nisco G., Kok A.M., Tomaniak M., Nous F.M.A., Korteland S.A. et al. Wall shear stress-related plaque growth of lipid- rich plaques in human coronary arteries: an near-infrared spectroscopy and optical coherence tomography study. Cardiovasc. Res. 2023; 119(4): 1021–1029. DOI: 10.1093/cvr/cvac178
- Bacigalupi E., Pizzicannella J., Rigatelli G., Scorpiglione L., Foglietta M., Rende G. et al. Biomechanical factors and atherosclerosis localization: insights and clinical applications. Front. Cardiovasc. Med. 2024; 11: 1392702. DOI: 10.3389/fcvm.2024.1392702
- Pelliccia F., Zimarino M., De Luca G., Viceconte N., Tanzilli G., De Caterina R. Endothelial progenitor cells in coronary artery disease: from bench to bedside. Stem. Cells. Transl. Med. 2022; 11 (5): 451–460. DOI: 10.1093/stcltm/szac010
- Russo G., Pedicino D., Chiastra C., Vinci R., Lodi Rizzini M., Genuardi L. et al. Coronary artery plaque rupture and erosion: role of wall shear stress profiling and biological patterns in acute coronary syndromes. Int. J. Cardiol. 2023; 370: 356–365. DOI: 10.1016/j.ijcard.2022.10.139
- Joshi D., Coon B.G., Chakraborty R., Deng H., Yang Z., Babar M.U. et al. Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. Nat. Cardiovasc. Res. 2024; 3 (9): 1035–1048. DOI: 10.1038/s44161-024-00522-z
- Sangwung P., Zhou G., Nayak L., Chan E.R., Kumar S., Kang D.W. et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight. 2017; 2 (4): e91700. DOI: 10.1172/jci.insight.91700
- Lu Y.W., Martino N., Gerlach B.D., Lamar J.M., Vincent P.A., Adam A.P., Schwarz J.J. MEF2 (Myocyte Enhancer Factor 2) is essential for endothelial homeostasis and the atheroprotective gene expression program. Arterioscler. Thromb. Vasc. Biol. 2021; 41 (3): 1105–1123. DOI: 10.1161/ATVBAHA.120.314978
- Simmons R.D., Kumar S., Jo H. The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch. Biochem. Biophys. 2016; 591: 111–131. DOI: 10.1016/j.abb.2015.11.005
- Zhabin S.N., Lazarenko V.A., Azarova Yu.E., Bashkatov D.A., Klyosova E.Yu., Gneeva E.G. et al. Association analysis of polymorphism rs386000 of the LILRA3 gene and the risk of atherosclerosis obliterans: a pilot study. Kardiologiia. 2024; 64 (6): 43–49 (in Russ.). DOI: 10.18087/cardio.2024.6.n2365
- Arutyunov G.P., Tarlovskaya E.I., Arutyunov A.G., Batluk T.I., Koziolova N.A., Chesnikova A.I. et al. Patients with non-obstructive coronary artery disease and polyvascular disease. Sub-analysis of the real-world registry KAMMA (Clinical Registry on Patient Population With Polyvascular Disease in the Russian Federation and Eurasian Countries). Kardiologiia. 2024; 64 (8): 13–23 (in Russ.). DOI: 10.18087/ cardio.2024.8.n2683
- Filatova E.V., Krylova N.S., Klass A.L., Kovalevskaya E.A., Maslova M.Yu., Shadrina M.I. et al. No effect of the p.Arg230 his variant of the VCL protein on the course of the hypertrophic cardiomyopathy in Russian family carrying the p.Gln1233Ter pathogenic variant in the MYBPC3 gene. Kardiologiia. 2023; 63 (3): 28–35 (in Russ.). DOI: 10.18087/cardio.2023.3.n1937


