Epigenetics of cardiovascular diseases – focus on cardiooncology
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Buziashvili Yu.I., Matskeplishvili S.T., Asymbekova E.U., Tugeeva E.F., Akildzhonov F.R. Epigenetics of cardiovascular diseases – focus on cardiooncology. Creative Cardiology. 2025; 19 (4): 415–423 (in Russ.). DOI: 10.24022/1997-3187-2025-19-2-415- 423
Received / Accepted: 01.09.2025 / 07.11.2025
Keywords: DNA methylation epigenetics cardiooncology
Abstract
Cardiovascular diseases (CVD) continue to occupy a dominant position in the structure of global morbidity and mortality. In recent years, special attention of researchers has been attracted by the role of epigenetic regulation in the pathogenesis of CVD. Epigenetic mechanisms, which are a system of inherited changes in gene expression without modification of the primary structure of DNA, are considered as a key link in the interaction between genetic predisposition and the influence of environmental factors. Studies have confirmed that epigenetic regulation plays a significant role in changing the phenotype, affecting the genes responsible for maintaining cardiovascular homeostasis. This circumstance determines the growing interest of the medical scientific community in the study of epigenetic modifications, since they allow us to uncover the molecular basis for the transformation of risk factors into subclinical and manifest forms. This article describes the epigenetic mechanisms of cardiovascular diseases and highlights in detail the relevance of epigenetics in cardio-oncology.References
- Akildzhonov F.R., Buziashvili Yu.I., Asymbekova E.U., Artamonova E.V., Tugeeva E.F. Global deformation of left ventricle: chemotherapy- induced cardiotoxicity. Creative Cardiology. 2022; 16 (1): 15–25 (in Russ.). DOI: 10.24022/1997-3187-2022-16-1-15-25
- Akildzhonov F.R., Buziashvili Yu.I., Asymbekova E.U., Tugeeva E.F., Alimov V.P. Early prevention of cardiotoxicity in cancer patients: focus on medical therapy. Creative Cardiology. 2021; 15 (3): 322–331 (in Russ.). DOI: 10.24022/1997-3187-2021-15-3-322-331
- Wołowiec A., Wołowiec Ł., Grześk G., Jaśniak A., Osiak J., Husejko J., Kozakiewicz M. The role of selected epigenetic pathways in cardiovascular diseases as a potential therapeutic target. Int. J. Mol. Sci. 2023; 24 (18): 13723. DOI: 10.3390/ijms241813723
- Felsenfeld G. A brief history of epigenetics. Cold. Spring. Harb. Perspect. Biol. 2014; 6 (1): a018200. DOI: 10.1101/cshperspect.a018200
- Nemtsova M.V., Andreeva Yu.Yu. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects. Cancer Urology. 2015; 11 (1): 12–19 (in Russ.) DOI: 10.17650/1726-9776-2015-1-12-19
- Amorim J.A., Coppotelli G., Rolo A.P., Palmeira C.M., Ross J.M., Sinclair D.A. Mitochondrial and metabolic dysfunction in ageing and age- related diseases. Nat. Rev. Endocrinol. 2022; 18 (4): 243–258. DOI: 10.1038/s41574-021-00626-7
- Westerman K.E., Ordovás J.M. DNA methylation and incident cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care. 2020; 23 (4): 236–240. DOI: 10.1097/MCO.0000000000000659
- Domingo-Relloso A., Riffo-Campos A.L., Zhao N., Ayala G., Haack K., Manterola C. et al. Multicohort epigenome-wide association study of all-cause cardiovascular disease and cancer incidence: A cardio-oncology approach. JACC CardioOncol. 2024; 6 (5): 731–742. DOI: 10.1016/j.jaccao.2024.07.014
- Mahmood S.S., Levy D., Vasan R.S., Wang T.J. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014; 383 (9921): 999–1008. DOI: 10.1016/S0140-6736(13)61752-3
- Shi Y., Zhang H., Huang S., Yin L., Wang F., Luo P., Huang H. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal. Transduct. Target. Ther. 2022; 7 (1): 200. DOI: 10.1038/s41392-022-01055-2
- Liu R., Wu J., Guo H., Yao W., Li S., Lu Y. et al. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm. (2020). 2023; 4 (3): e292. DOI: 10.1002/mco2.292
- Liu G., Bin P., Wang T., Ren W., Zhong J., Liang J. et al. DNA methylation and the potential role of methyl-containing nutrients in cardiovascular diseases. Oxid. Med. Cell. Longev. 2017: 1670815. DOI: 10.1155/2017/1670815
- Wang G., Wang B., Yang P. Epigenetics in congenital heart disease. J. Am. Heart Assoc. 2022; 11 (7): e025163. DOI: 10.1161/JAHA.121.025163
- Gao H., Li J., Ma Q., Zhang Q., Li M., Hu X. Causal associations of DNA methylation and cardiovascular disease: a two-sample mendelian randomization study. Glob. Heart. 2024; 19 (1): 48. DOI: 10.5334/gh.1324
- Kennel P.J., Liao X., Saha A., Ji R., Zhang X., Castillero E. et al. Impairment of myocardial glutamine homeostasis induced by suppression of the amino acid carrier SLC1A5 in failing myocardium. Circ. Heart Fail. 2019; 12 (12): e006336. DOI: 10.1161/CIRCHEARTFAILURE.119.006336
- Prandi F.R., Lecis D., Illuminato F., Milite M., Celotto R., Lerakis S. et al. Epigenetic modifications and non-coding RNA in diabetes-mellitus- induced coronary artery disease: pathophysiological link and new therapeutic frontiers. Int. J. Mol. Sci. 2022; 23 (9): 4589. DOI: 10.3390/ ijms23094589
- Zhong Z., Wu H., Zhong W., Zhang Q., Yu Z. Expression profiling and bioinformatics analysis of circulating microRNAs in patients with acute myocardial infarction. J. Clin. Lab. Anal. 2020; 34 (3): e23099. DOI: 10.1002/jcla.23099
- Tsao C.W., Vasan R.S. Cohort profile: the Framingham Heart Study (FHS): overview of milestones in cardiovascular epidemiology. Int. J. Epidemiol. 2015; 44 (6): 1800–1813. DOI: 10.1093/ije/dyv337
- Fang X., Poulsen R., Zhao L., Wang J., Rivkees S.A., Wendler C.C. Knockdown of DNA methyltransferase 1 reduces DNA methylation and alters expression patterns of cardiac genes in embryonic cardiomyocytes. FEBS Open Bio. 2021; 11 (8): 2364–2382. DOI: 10.1002/2211-5463.13252
- Fischer M.A., Vondriska T.M. Clinical epigenomics for cardiovascular disease: Diagnostics and therapies. J. Mol. Cell. Cardiol. 2021; 154: 97–105. DOI: 10.1016/j.yjmcc.2021.01.011
- Wang L., Zhang Q., Yuan K., Yuan J. mtDNA in the pathogenesis of cardiovascular diseases. Dis. Markers. 2021; 2021: 7157109. DOI: 10.1155/2021/7157109
- Da Silva R.A., da S Feltran G., da C Fernandes C.J., Zambuzzi W.F. Osteogenic gene markers are epigenetically reprogrammed during contractile-to-calcifying vascular smooth muscle cell phenotype transition. Cell. Signal. 2020; 66: 109458. DOI: 10.1016/j.cellsig.2019.109458
- Dai X., Liu S., Cheng L., Huang T., Guo H., Wang D. et al. Epigenetic Upregulation of H19 and AMPK inhibition concurrently contribute to S-adenosylhomocysteine hydrolase deficiency-promoted atherosclerotic calcification. Circ. Res. 2022; 130 (10): 1565–1582. DOI: 10.1161/ CIRCRESAHA.121.320251
- Leem J., Lee I.K. Mechanisms of vascular calcification: The pivotal role of pyruvate dehydrogenase kinase 4. Endocrinol. Metab. (Seoul). 2016; 31 (1): 52–61. DOI: 10.3803/EnM.2016.31.1.52
- Pratamawati T.M., Alwi I., Asmarinah. Summary of known genetic and epigenetic modification contributed to hypertension. Int. J. Hypertens. 2023; 2023: 5872362. DOI: 10.1155/2023/5872362
- Roberts M.L., Kotchen T.A., Pan X., Li Y., Yang C., Liu P. et al. Unique associations of dna methylation regions with 24-hour blood pressure phenotypes in black participants. Hypertension. 2022; 79 (4): 761–772. DOI: 10.1161/HYPERTENSIONAHA.121.18584
- Putra S., Reichetzeder C., von Websky K., Neuber C., Halle H., Kleuser B. et al. Association between placental global DNA methylation and blood pressure during human pregnancy. J Hypertens. 2022; 40 (5): 1002–1009. DOI:
- Broséus L., Vaiman D., Tost J., Martin C.R.S., Jacobi M., Schwartz J.D. et al. Maternal blood pressure associates with placental DNA methylation both directly and through alterations in cell-type composition. BMC Med. 2022; 20 (1): 397. DOI: 10.1186/s12916-022-02610-y
- Bao X.J., Mao S.Q., Gu T.L., Zheng S.Y., Zhao J.S., Zhang L.N. Hypomethylation of the interferon γ gene as a potential risk factor for essential hypertension: a case-control study. Tohoku J. Exp. Med. 2018; 244 (4): 283–290. DOI: 10.1620/tjem.244.283
- Joyce B.T. Epigenomics of cardio-oncology. JACC CardioOncol. 2024; 6 (5): 743–745. DOI: 10.1016/j.jaccao.2024.07.013
- Papazoglou P., Peng L., Sachinidis A. Epigenetic mechanisms involved in the cardiovascular toxicity of anticancer drugs. Front. Cardiovasc. Med. 2021; 8: 658900. DOI: 10.3389/fcvm.2021.658900
- Desiderio A., Pastorino M., Campitelli M., Longo M., Miele C., Napoli R. et al. DNA methylation in cardiovascular disease and heart failure: novel prediction models? Clin. Epigenetics. 2024; 16 (1): 115. DOI: 10.1186/s13148-024-01722-x
- Ruggeri C., Gioffré S., Achilli F., Colombo G.I., D’Alessandra Y. Role of microRNAs in doxorubicin-induced cardiotoxicity: an overview of preclinical models and cancer patients. Heart Fail. Rev. 2018; 23 (1): 109–122. DOI: 10.1007/s10741-017-9653-0
- Liu H., Wang S., Wang J., Guo X., Song Y., Fu K. et al. Energy metabolism in health and diseases. Signal. Transduct. Target. Ther. 2025; 10(1): 69. DOI: 10.1038/s41392-025-02141-x
- De Baat E.C., Mulder R.L., Armenian S., Feijen E.A., Grotenhuis H., Hudson M. et al. Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines. Cochrane Database Syst. Rev. 2022; 9 (9): CD014638. DOI: 10.1002/14651858.CD014638.pub2
- Buziashvili Yu.I., Matskeplishvili S.T., Asymbekova E.U., Tugeeva E.F., Akildzhonov F.R. Molecular and genetic aspects cardiotoxicity of cancer chemotherapy. Creative Cardiology. 2024; 18 (Special Issue): S57–S63 (in Russ.). DOI: 10.24022/1997-3187– 2024-18S-S57–S63
- Keren M.A., Sigaev I.Yu., Osipova A.I., Volkovskaya I.V., Zavalikhina T.V., Avakova S.A. et al. Impact of chronic kidney disease on type of coronary artery bypass grafting and on the structure of postoperative complication s in patients with coronary artery disease. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (4): 414–423 (in Russ.). DOI: 10.24022/0236-2791-2023-65-4-414-423
- Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2023 and development prospects. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; 25 (Special Issue): 5–41 (in Russ.). DOI: 10.24022/1810-0694-2024-25S
- Sokolova I.Ya., Murtuzaliev Sh.M., Kardovskaya S.A., Shchendrygina A.A., Markin P.A., Appolonova S.A et al. Assessment of specific biomarkers’ profile and structural, functional parameters of the left ventricle in patients with lymphomas undergoing antitumor therapy. Kardiologiia. 2024; 64 (9): 28–38 (in Russ.). DOI: 10.18087/cardio.2024.9.n2743
- Jin G., Wang K., Zhao Y., Yuan S., He Z., Zhang J. Targeting histone deacetylases for heart diseases. Bioorg Chem. 2023; 138: 106601. DOI: 10.1016/j.bioorg.2023.106601
- Bockeria L.A., Semenov V.Yu., Milievskaya E.B., Skopin A.I., Golubev N.A., Pryanishnikov V.V. Surgical and interventional treatment of patients with coronary heart disease in Russian Federation (1996–2022). Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2024; 66 (3): 291– 301 (in Russ.). DOI: 10.24022/0236-2791-2024-66-3-291-301
About Authors
- Yuriy I. Buziashvili, Dr. Med. Sci., Professor, Academician of the Russian Academy of Sciences, Head Department; ORCID
- Simon T. Matskeplishvili, Dr. Med. Sci., Professor, Corresponding Member of RAS, Chief Researcher; ORCID
- Elmira U. Asymbekova, Dr. Med. Sci., Leading Researcher; ORCID
- Elvina F. Tugeeva, Dr. Med. Sci., Leading Researcher; ORCID
- Firdavsdzhon R. Akildzhonov, Cand. Med. Sci., Junior Researcher; ORCID


