New evaluation features of ventricular arrhythmia substrate: therole of magnetic resonance imaging

Authors: Berdibekov B.Sh., Aleksandrova S.A., Golukhova E.Z.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2019-13-3-217-228

For citation: Berdibekov B.Sh., Aleksandrova S.A., Golukhova E.Z. New evaluation features of ventricular arrhythmia substrate: the role of magnetic resonance imaging. Creative Cardiology. 2019; 13 (3): 217–28 (in Russ.). DOI: 10.24022/ 1997-3187-2019-13-3-217-228

Received / Accepted:  15.08.2019/27.08.2019

Keywords: magnetic resonance imaging ventricular arrhythmias myocardial fibrosis

Download
Full text:  

 

Abstract

Myocardial fibrosis is a major pathophysiologic determinant of the appearence and maintenance of recurrent ventricular arrhythmias which are usually associated with structural heart disease. However, the arrhythmogenic substrate and its cause may remain unclear in about 50% of cases after traditional diagnostic evaluation, including a 12-channel electrocardiography, transthoracic echocardiography and coronary angiography/computed tomography. In the past decade, magnetic resonance imaging of the heart has acquired an increasing role as a reliable diagnostic tool, and is the reference method for non-invasive detection and evaluation of myocardial fibrosis confirmed by validated data, including histological studies. Sudden cardiac death prevention strategies are hampered by overreliance on left ventricular ejection fraction below 35%. But this approach further fails to identify individuals who experience the majority, as many as 80%, of sudden cardiac death events which occur in the setting of more preserved left ventricular ejection fraction. Fibrosis detection and measurement with late gadolinium enhancement has been closely associated with arrhythmogenic events in numerous studies. The article presents an overview of recent data on the role of magnetic resonance imaging in the prediction of arrhythmic events in patients with coronary and/or non-coronary myocardial diseases.

References

  1. Bockeria L.A., Revishvili A.Sh., Ardashev A.V., Kochovich D.Z. Ventricular arrhythmias. Мoscow: Medpraktika; 2002 (in Russ.).
  2. Muser D., Santangeli P., Selvanayagam J.B., Nucifora G. Role of cardiac magnetic resonance imaging in patients with idiopathic ventricular arrhythmias. Curr. Cardiol. Rev. 2019; 15 (1): 12–23. DOI: 10.2174/1573403X14666180925095923
  3. Pattanayak P., Bleumke D.A. Tissue characterization of the myocardium: state of the art characterization by magnetic resonance and computed tomography imaging. Radiol. Clin. North Am. 2014; 53 (2): 413–23. DOI: 10.1016/j.rcl.2014.11.005
  4. Kwong R.Y., Chan A.K., Brown K.A., Chan C.W., Reynolds H.G. Tsang S. et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006; 113 (23): 2733–43. DOI: 10.1161/CIRCULATIONAHA.105.570648
  5. Golukhova E.Z., Gromova O.I., Bulaeva N.I., Bokeria L.A. Sudden cardiac death in patients with ischemic heart disease: from mechanisms to clinical practice. Kardiologiia. 2017; 57 (12): 7381 (in Russ.). DOI: 10.18087/cardio.2017.12.10069
  6. Sutton M.G., Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000; 101 (25): 2981–8. DOI: 10.1161/01.cir.101.25.2981
  7. Bohl S., Wassmuth R., Abdel-Aty H., Rudolph A., Messroghli D., Dietz R. et al. Delayed enhancement cardiac magnetic resonance imaging reveals typical patterns of myocardial injury in patients with various forms of non-ischemic heart disease. Int. J. Cardiovasc. Imaging. 2008; 24 (6): 597–607. DOI: 10.1007/s10554-008-9300-x
  8. Revishvili A.Sh., Noskova M.V., Rzaev F.G., Artyukhina E.A. Noninvasive topical diagnostics of noncoronarogenic ventricular arrhythmias. Journal of Arrhythmology. 2004; 35: 5–15 (in Russ.)
  9. Gromova O.I., Aleksandrova S.A., Makarenko V.N., Golukhova E.Z. Modern predictors of life-threatening arrhythmias. Creative Cardiology. 2012; 2: 30–46 (in Russ.)
  10. Das M.K., Khan B., Jacob S., Kumar A., Mahenthiran J. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation. 2006; 113 (21): 2495–2501. DOI:10.1161/CIRCULATIONAHA.105.595892
  11. Bokeria L.A., Alekhin M.N., Machina T.V., Mrikaev D.V., Golukhova E.Z. Modern ultrasound technologies in cardiology and cardiac surgery. Moscow; 2018 (in Russ.)
  12. Roes S.D., Mollema S.A., Lamb H.J., van der Wall E.E., de Roos A., Bax J.J. Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic resonance imaging. Am. J. Cardiol. 2009; 104 (3): 312–7. DOI: 10.1016/j.amjcard.2009.03.040
  13. Shomakhov R.A., Makarenko V.N., Bockeria L.A. Evolution of diagnostic methods and prediction of noncoronary ventricular arrhythmias. Creative Cardiology. 2014; 2: 36–47 (in Russ.)
  14. Iles L.M., Ellims A.H., Llewellyn H., Hare J.L., Kaye D.M., McLean C.A., Taylor A.J. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (1): 14–22. DOI: 10.1093/ehjci/jeu182
  15. Schelbert E.B., Hsu L.Y., Anderson S.A., Mohanty B.D., Karim S.M., Kellman P. et al. Late gadolinium- enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart. Circ. Cardiovasc. Imaging. 2010; 3 (6): 743–52. DOI: 10.1161/CIRCIMAGING.108.835793
  16. Golukhova E.Z. Sudden cardiac death. Did the results of randomized trials change our opinion of the possible predictors and the ways to prevent? Creative Cardiology. 2008; 1: 7–24 (in Russ.)
  17. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016; 37 (27): 2129–200. DOI: 10.1093/eurheartj/ehw128
  18. Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J. et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2015; 36 (41): 2793–867. DOI: 10.1093/eurheartj/ehv316
  19. Adam R.D., Shambrook J., Flett A.S. The prognostic role of tissue characterisation using cardiovascular magnetic resonance in heart failure. Card. Fail Rev. 2017; 3 (2): 86–96. DOI: 10.15420/cfr.2017:19:1
  20. Ko/ber L., Thune J.J., Nielsen J.C., Haarbo J., Videbaek L., Korup E. et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N. Engl. J. Med. 2016; 375 (13): 1221–30. DOI: 10.1056/NEJMoa1608029
  21. Satoh H., Sano M., Suwa K., Saitoh T., Nobuhara M., Saotome M. et al. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis. World J. Cardiol. 2014; 6 (7): 585–601. DOI: 10.4330/wjc.v6.i7.585
  22. Klem I., Weinsaft J.W., Bahnson T.D., Hegland D., Kim H.W., Hayes B. et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J. Am. Coll. Cardiol. 2012; 60 (5): 408–20. DOI: 10.1016/j.jacc.2012.02.070
  23. Neilan T.G., Coelho-Filho O.R., Danik S.B., Shah R.V., Dodson J.A., Verdini D.J. et al. CMR quantification of myocardial scar provides additive prognostic information in nonischemic cardiomyopathy. JACC Cardiovasc. Imaging. 2013; 6 (9): 944–54. DOI: 10.1016/j.jcmg.2013.05.013
  24. Al Jaroudi W.A., Flamm S.D., Saliba W., Wilkoff B.L., Kwon D. Role of CMR imaging in risk stratification for sudden cardiac death. JACC Cardiovasc. Imaging. 2013; 6 (3): 392–406. DOI: 10.1016/j.jcmg.2012.11.011
  25. Leyva F., Zegard A., Acquaye E., Gubran C., Taylor R., Foley P.W. et al. Outcomes of cardiac resynchronization therapy with or without defibrillation in patients with nonischemic cardiomyopathy. J. Am. Coll. Cardiol. 2017; 70 (10): 1216–27. DOI: 10.1016/j.jacc.2017.07.712
  26. Halliday B.P., Gulati A., Ali A., Guha K., Newsome S., Arzanauskaite M. et al. Association between midwall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation. 2017; 135 (22): 2106–15. DOI: 10.1161/CIRCULATIONAHA.116.026910
  27. Ganesan A.N., Gunton J., Nucifora G., McGavigan A.D., Selvanayagam J.B. Impact of late gadolinium enhancement on mortality, sudden death and major adverse cardiovascular events in ischemic and nonischemic cardiomyopathy: A systematic review and metaanalysis. Int. J. Cardiol. 2018; 254: 230–7. DOI: 10.1016/j.ijcard. 2017.10.094
  28. Zeidan-Shwiri T., Yang Y., Lashevsky I., Kadmon E., Kagal D., Dick A. et al. Magnetic resonance estimates of the extent and heterogeneity of scar tissue in ICD patients with ischemic cardiomyopathy predict ventricular arrhythmia. Heart Rhythm. 2015; 12 (4): 802–8. DOI: 10.1016/j.hrthm.2015.01.007
  29. Sonoda K., Okumura Y., Watanabe I., Nagashima K., Mano H., Kogawa R. et al. Scar characteristics derived from two- and three-dimensional reconstructions of cardiac contrast-enhanced magnetic resonance images: Relationship to ventricular tachycardia inducibility and ablation success. J. Arrhythm. 2017; 33 (5): 447–54. DOI: 10.1016/j.joa.2016.11.001
  30. Rayatzadeh H., Tan A., Chan R.H., Patel S.J., Hauser T.H., Ngo L. et al. Scar heterogeneity on cardiovascular magnetic resonance as a predictor of appropriate implantable cardioverter defibrillator therapy. J. Cardiovasc. Magn. Reson. 2013; 15 (1): 31. DOI: 10.1186/1532-429X-15-31
  31. Kadish A.H., Bello D., Finn J.P., Bonow R.O., Schaechter A., Subacius H. et al. Rationale and design for the Defibrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation (DETERMINE) trial. J. Cardiovasc. Electrophysiol. 2009; 20 (9): 982–7. DOI: 10.1111/j.1540-8167.2009.01503.x
  32. Selvanayagam J.B., Hartshorne T., Billot L., Grover S., Hillis G.S., Jung W. et al. Cardiovascular magnetic resonance-GUIDEd management of mild to moderate left ventricular systolic dysfunction (CMR GUIDE): Study protocol for a randomized controlled trial. Ann. Noninvasive Electrocardiol. 2017; 22 (4). DOI: 10.1111/anec.12420
  33. Moon J.C., Reed E., Sheppard M.N., Elkington A.G., Ho S.Y., Burke M. et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2004; 43 (12): 2260–4. DOI: 10.1016/j.jacc.2004.03.035
  34. Schulz-Menger J., Bluemke D.A., Bremerich J., Flamm S.D., Fogel M.A., Friedrich M.G. et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J. Cardiovasc. Magn. Reson. 2013; 15: 35. DOI: 10.1186/1532-429X-15-35
  35. Diao K.Y., Yang Z.G., Xu H.Y., Liu X., Zhang Q., Shi K. et al. Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J. Cardiovasc. Magn. Reson. 2016; 18 (1): 92. DOI: 10.1186/s12968-016-0313-7
  36. Kellman P., Wilson J.R., Xue H., Bandettini W.P., Shanbhag S.M., Druey K.M. et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J. Cardiovasc. Magn. Reson. 2012; 14 (1): 64. DOI: 10.1186/1532-429X-14-64
  37. Chen Z., Sohal M., Voigt T., Sammut E., Tobon- Gomez C., Child N. et al. Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non-ischemic cardiomyopathy patients with implantable cardioverter- defibrillators. Heart Rhythm. 2015; 12 (4): 792–801. DOI: 10.1016/j.hrthm.2014.12.020
  38. Claridge S., Mennuni S., Jackson T., Behar J.M., Porter B., Sieniewicz B. et al. Substrate-dependent risk stratification for implantable cardioverter defibrillator therapies using cardiac magnetic resonance imaging: The importance of T1 mapping in nonischemic patients. J. Cardiovasc. Electrophysiol. 2017; 28 (7): 785–95. DOI: 10.1111/jce.13226

About Authors

  • Bektur Sh. Berdibekov, Postgraduate, ORCID;
  • Svetlana A. Aleksandrova, Cand. Med. Sc., Senior Researcher, ORCID;
  • Elena Z. Golukhova, Dr Med. Sc., Professor, Academician of RAS, Head of Department, ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery