Comparison of the effectiveness of angiogenesis stimulationin the ischemic limbs of rats when delivering a combinationof VEGF and Ang genes in direct and cell-mediated ways

Authors: Samatoshenkov I.V.12, Alekseeva K.V.3, Zhuravleva M.N.4

Company: 1Kazan State Medical University, Ministry of Health of the Russian Federation, ulitsa Butlerova, 49, Kazan, 420012, Russian Federation;
2Interregional Clinical and Diagnostic Center, ulitsa Karbysheva, 12a, Kazan, 420101, Russian Federation;
3National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, ulitsa Cherepkovskaya, 15a, Moscow, 121552, Russian Federation;
4Kazan (Volga Region) Federal University, ulitsa Kremlevskaya, 18, Kazan, 420008, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2019-13-3-250-262

For citation: Samatoshenkov I.V., Alekseeva K.V., Zhuravleva M.N. Comparison of the effectiveness of angiogenesis stimulation in the ischemic limbs of rats when delivering a combination of VEGF and Ang genes in direct and cell-mediated ways. Creative Cardiology. 2019; 13 (3): 250–62 (in Russ.). DOI: 10.24022/1997-3187-2019-13-3-250-262

Received / Accepted:  27.08.2019/04.09.2019

Keywords: calf muscle ischemia umbilical cord blood mononuclear cells angiogenesis vascular endothelial growth factor

Download
Full text:  

 

Abstract

Objective: in the model of chronic ischemia of the hind limb of the rat to investigate the effect on stimulation of angiogenesis adenovirus type V carrying the gene combination of recombinant human vascular endothelial growth factor VEGF 165 and Ang (Ad5-VEGF + Ad5-Ang), as in the case of direct injection of the gene construct, and with the help of mononuclear cells umbilical cord blood (HUCB-MNC).

Material and methods. The study was conducted on 45 Wistar rats. On day 14 after creation of ischemia by excision of the fragment of the femoral artery, the rats were divided into 3 groups: 1 – the group with gene combination – VEGF and Ang – injection at the distal part of the gastrocnemius muscle (group Ad5-VEGF + Ad5-Ang, n=15), 2 – the group with translation of the same gene combination of mononuclear cells in umbilical cord blood (group HUCB-MNC Ad5-VEGF + Ad5-Ang, n=15) and 3 – control group, with the saline injection in the same volume at the same points (NaCl group, n=15). On the 28th day after the genetic structures administration in the ischemic area, the ratio of capillaries/muscle fibers, the number of muscle fibers and the number of muscle fibers with a central location of nuclei (MCI) were estimated.

Results. In AD5-Ang and HUCB-MNCAd5-Ang groups observed a marked decrease in muscle fibers number, 2.1 and 1.7 times respectively (p<0.05). The ratio of the number of capillaries to the number of muscle fibers and the number of muscle fibers with centrally located nuclei increased in both experimental groups, but the difference was not significant.

Conclusion. The injection of genetic structures with adenovirus vector to a greater extent stimulates the regeneration of skeletal muscle, having a slight effect on angiogenesis in ischemia.

References

  1. Fowkes G., Rudan D., Rudan I., Aboyans V. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013; 382: 1329–40. DOI: 10.1016/S0140-6736(13)61249-0
  2. Bulgin D.V., Andreeva O.V. Therapeutic angiogen-esis using growth factors and bone marrow cells:the biological basis and the prospects for clinicaluse. Kletochnaya Transplantologiya i TkanevayaInzheneriya (Cellular Transplantology and TissueEngineering).2015; XVII (3): 7–12 (in Russ.). DOI: 10.15825/1995-1191-2015-3-89-111
  3. Deev R.V., Mzhavanadze N.D. The main trends oftherapeutic neoangiogenesis in the treatment ofchronic lower limb ischemia (literature review).Nauka Molodykh (Science Young).2013; 3: 103–9(in Russ.).
  4. Deev R.V., Grigoryan A.S., Potapov I.V., Kise-lev S.L., Isaev A.A. World experience and trends ingene therapy of ischemic diseases. Angiologiaya iSosudistaya Khirurgiya (Angiology and VascularSurgery).2011; 17 (2): 145–54 (in Russ.).
  5. Jazwa A., Tomczyk M., Taha H.M., Hytonen E., Stoszko M., Zentilin L. et al. Arteriogenic therapy based on simultaneous delivery of VEGF-A and FGF4 genes improves the recovery from acute limb ischemia. Vasc. Cell. 2013; 5: 13. DOI: 10.1186/2045-824X-5-13
  6. Sanada F., Taniyama Y., Azuma J., Yuka I., Kanbara Y., Iwabayashi M. et al. Therapeutic angiogenesis by gene therapy for critical limb ischemia: Choice of biological agent. Immunol. Endocr. Metab. Agents Med. Chem. 2014; 14 (1): 32–9. DOI: 10.2174/1871522213999131231105139
  7. Chen H., Hung H., Shyu K., Wang B., Sheu J., Liang Y. et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur. J. Clin. Invest. 2005; 35 (11): 677–86. DOI: 10.1111/j.1365-2362.2005.01565
  8. Ikeda Y., Fukuda N., Wada M., Matsumoto T., Satomi A., Yokoyama S. et al. Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens. Res. 2004; 27 (2): 119–28. DOI: 10.1291/hypres.27.119
  9. Gupta R., Tongers J., Losordo D.W. Human studies of angiogen therapy. Circ. Res. 2009; 105: 724–36. DOI: 10.1161/CIRCRESAHA.109.200386
  10. Voronov D.A., Bochkov N.P., Gavrilenko A.V.Study of the possibility of using gene therapy meth-ods for the treatment of patients with lower limbischemia. Vestnik RAMS (Bulletin of RussianAcademy of Medical Sciences).2006; 9–10: 6–11(in Russ.).
  11. Konstantinov B.A., Bochkov N.P., Gavrilenko A.V.Experimental and clinical results of the use ofgenetically engineered structures with the angio-genin gene in the treatment of chronic lower limbischemia. Meditsinskaya Genetika (Medical Gene-tics).2005; 4 (7): 327–31 (in Russ.).
  12. Makarevich P.I., Dergilev K. V., Tsokolaeva Z.I., Boldyreva M.A., Shevchenko E.K., Glukhanyuk E.V. et al. Angiogenic and pleiotropic effects of VEGF165 and HGF combined gene therapy in a rat model of myocardial infarction. PLoS One. 2018; 13 (5): e0197566. DOI: 10.1371/journal.pone.0197566. eCollection 2018: 1–25.
  13. Makinen K., Manninen H., Hedman M., Matsi P., Mussalo H., Alhava E., Yla-Herttuala S. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol. Ther. 2002; 6: 127–33. DOI: 10.1006/mthe.2002.0638
  14. Rajagopalan S., Mohler E.R., Lederman R.J., Mendelsohn F.O., Saucedo J.F., Goldman C.K. et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003; 108: 1933–8. DOI: 10.1161/01.CIR.0000093398.16124.29
  15. Nikol S., Baumgartner I.,Van Belle E., Diehm C., Visona A., Capogrossi M.C. et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol. Ther. 2008; 16 (5): 972–8. DOI: 10.1038/mt.2008.33
  16. Lederman R.J., Mendelsohn F.O., Anderson R.D., Saucedo J.F.,Tenaglia A.N., Hermiller J.B. et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet. 2002; 359 (9323): 2053–8. DOI: 10.1016/s0140-6736(02)08937-7
  17. Comerota A.J., Throm R.C., Miller K.A., Henry T., Chronos N., Laird J. et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J. Vasc. Surg. 2002; 35: 930–6. DOI: 10.1067/mva.2002.123677
  18. Bosiers M., Schneider P.A. Critical limb ischemia. N.-Y.: Informa Healthcare USA; 2009.
  19. Armstrong L., Lako M., Buckley N., Lappin T.R., Murphy M.J., Nolta J.A. et al. Our top 10 developments in stem cell biology over the last 30 years. Stem Cells. 2012; 30 (1): 2–9. DOI: 10.1002/ stem.1007
  20. Lawall H., Bramlage P., Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. Thromb. Haemost. 2010; 103: 696–709. DOI: 10.1160/TH09-10-0688
  21. Shumakov V.A., Onishchenko M.A. Biologicalreserves of bone marrow cells and correction oforgan dysfunctions. Moscow; 2009 (in Russ.).
  22. Li W., Mа N., Ong L. et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007: 78–82. DOI: 10.1634/stemcells.2006-0771
  23. Xie N., Li Z., Adesanya T.M., Guo W., Liu Y., Fu M. et al. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. J. Cell. Mol. Med. 2016; 20 (1): 29–37. DOI: 10.1111/jcmm.12489
  24. Zhe L., Guo L.Z., Kim T., Han S., Kim S. Angiovasculogenic properties of endothelial-induced mesenchymal stem cells derived from human adipose tissue. Circ. J. 2016; 80: 998–1007. DOI: 10.1253/circj.CJ-15-1169
  25. Shevchenko E.K., Talitsky K.A., Parfenova E.V.Prospects for improving the effectiveness of geneand cell therapy of cardiovascular diseases: geneti-cally modified cells. Kletochnaya Transplantologiyai Tkanevaya Inzheneriya (Cell Transplantation andTissue Engineering).2010; 5: 215–8 (in Russ.).
  26. Voronov D.A. The use of gene inducers of neoan-giogenesis in the complex treatment of patientswith chronic lower limb ischemia: fundamentalaspects and clinical results. Kardiologiya iSerdechno-Sosudistaya Khirurgiya (Cardiology andCardiovascular Surgery).2009; 5: 44–8 (in Russ.).

About Authors

  • Igor’ V. Samatoshenkov, Postgraduate, Cardiac Surgeon, ORCID
  • Kseniya V. Alekseeva, Resident;
  • Margarita N. Zhuravleva, Junior Researcher, ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery