Molecular mechanisms of atrial fibrillation:„ideal” marker searching

Authors: A.Z. Zholbaeva, A.E. Tabina, E.Z. Golukhova

Company: A.N. Bakoulev Scientific Center for Cardiovascular Surgery; Rublevskoe shosse, 135, Moscow, 121552, Russian Federation


DOI: https://doi.org/10.15275/kreatkard.2015.02.04

For citation: A.Z. Zholbaeva, A.E. Tabina, E.Z. GolukhovaMolecular mechanisms of atrial fibrillation: „ideal” marker searchingCreative Cardiology. 2015; 2: 40-51

Keywords: atrial fibrillation renin-angiotensin-aldosterone system inflammation fibrosis endothelial disfunction

Download
Full text:  

 

Abstract

Nowadays, atrial fibrillation has become one of the most important public health problems and one of the main reasons for the increasing costs of the healthcare system. It is associated with such social-economic problems as a disability, cognitive dysfunction and frequent hospitalizations. One of the serious complications of this arrhythmia is ischemic stroke, leading to disability and death of the patient. During atrial fibrillation, the risk of stroke and thromboembolic complications increases five-folds, heart failure - three-folds, and the risk of dementia and death is doubled. Measures for the prevention of paroxysmal atrial fibrillation, including antiarrhythmic therapy and catheter ablation, are not effective enough. This is due to an incomplete understanding of the pathogenetic mechanisms underlying the arrhythmia. This article presents the prognostic value of neurohormonal markers, markers of inflammation, fibrosis, myocardial damage and endothelial disfunction in the development of atrial fibrillation and its complications.

References

1. Chugh S.S., Havmoeller R., Narayanan K. et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014; 129 (8): 837–47. 2. Zoni-Berisso M., Lercari F., Carazza T. et al. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 2014; 6: 213–20. 3. Бокерия Л.А., Шенгелия Л.Д. Механизмы фиб- рилляции предсердий: от идей и гипотез к эффективному пониманию проблемы. Анналы аритмологии. 2014; 11 (1): 5–9. DOI: 10.15275/annaritmol.2014.1.1. / Bockeria L.A., Shengelia L.D. Mechanisms of atrial fibrillation: from ideas and hypotheses to effective understanding of the problem. Annaly Aritmologii. 2014; 11 (1): 5–9. DOI: 10.15275/annaritmol.2014.1.1 (in Russian). 4. Ellinor P.T., Low A.F., Patton K.K. et al. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in atrial fibrillation. J. Am. Coll. Cardiol. 2005; 45: 82–6. 5. Hijazi Z., Oldgren J., Andersson U. et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation. 2012; 125 (13): 1605–16. 6. Sinner M.F., Stepas K.A., Moser C.B. et al. B-type natriuretic peptide and C-reactive protein in the prediction of atrial fibrillation risk: the CHARGEAF Consortium of community-based cohort studies. Europace. 2014; 16 (10): 1426–33. 7. Danicek V., Theodorovich N., Bar-Chaim S. et al. Sinus rhythm restoration after atrial fibrillation: the clinical value of N-terminal pro-BNP measurements. Pacing Clin. Electrophysiol. 2008; 31 (8): 955–60. 8. Beck-da-Silva L., de Bold A., Fraser M. et al. Brain natriuretic peptide predicts successful cardioversion in patients with atrial fibrillation and maintenance of sinus rhythm. Can. J. Cardiol. 2004; 20 (12): 1245–8. 9. Wożakowska-Kapłon B. Effect of sinus rhythm restoration on plasma brain natriuretic peptide in patients with atrial fibrillation. Am. J. Cardiol. 2004; 93: 1555–8. 10. Tang Y., Yang H., Qiu J. Relationship between brain natriuretic peptide and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. J. Int. Med. Res. 2011; 39 (5): 1618–24. 11. Solheim E., Off M.K., Hoff P.I. et al. N-terminal pro-B-type natriuretic peptide level at long-term follow-up after atrial fibrillation ablation: a marker of reverse atrial remodelling and successful ablation. J. Interv. Card. Electrophysiol. 2012; 34 (2): 129–36. 12. Arana-Rueda E., Pedrote A., García-Riesco L. et al. Clinical value of N-terminal pro-B-type natriuretic peptide measurement in the follow up of pulmonary vein ablation. Med. Clin. (Barc.) 2015. 13. Tzikas S., Keller T., Wild PS. et al. Midregional proatrial natriuretic peptide in the general population/Insights from the Gutenberg Health Study. Clin. Chem. Lab. Med. 2013; 51 (5): 1125–33. 14. Latini R., Masson S., Pirelli S. et al. Circulating cardiovascular biomarkers in recurrent atrial fibrillation: data from the GISSI-atrial fibrillation trial. J. Intern. Med. 2011; 269 (2): 160–71. 15. Wozakowska-Kaplon B., Opolski G. Atrial natriuretic peptide level aftІer cardioversion of chronic atrial fibrillation. Int. J. Cardiol. 2002; 83 (2): 159–65. 16. Meune C., Vermillet A., Wahbi K. et al. Mid-regional pro atrial natriuretic peptide allows the accurate identification of patients with atrial fibrillation of short time of onset: a pilot study. Clin. Biochem. 2011; 44 (16): 1315–9. 17. Hijazi Z., Wallentin L., Siegbahn A. et al. High-sensitivity troponin T and risk stratification in patients with atrial fibrillation during treatment with apixaban or warfarin. J. Am. Coll. Cardiol. 2014; 7–14; 63 (1): 52–61. 18. Hijazi Z., Siegbahn A., Andersson U. et al. Comparison of cardiac troponins I and T measured with high-sensitivity methods for evaluation of prognosis in atrial fibrillation: an ARISTOTLE substudy. Clin. Chem. 2015; 61 (2): 368–78. 19. Latini R., Masson S., Pirelli S. et al. Circulating cardiovascular biomarkers in recurrent atrial fibrillation: data from the GISSI-atrial fibrillation trial. J. Intern. Med. 2011; 269 (2): 160–71. 20. Ulimoen S.R., Enqer S. Norseth J. et al. Improved rate control reduces cardiac troponin T levels in permanent atrial fibrillation. Clin. Cardiol. 2014; 37 (7): 422–7. 21. Wu N., Chen X., Cai T. et al. Association of inflammatory and hemostatic markers with stroke and thromboembolic events in atrial fibrillation: A systematic review and meta-analysis. Can. J. Cardiol. 2015; 31 (3): 278–86. 22. Christersson C., Wallentin L., Andersson U. et al. Ddimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation – observations from the ARISTOTLE trial. J. Thromb. Haemost. 2014; 12 (9): 1401–12. 23. Oral H., Chugh A., Ozaydin M. et al. Risk of thromboembolic events after percutaneous left atrial radiofrequency ablation of atrial fibrillation. Circulation. 2006; 114: 759–65. 24. Lim H.S., Schultz C., Dang J. et al. Time course of inflammation, myocardial injury, and prothrombotic response after radiofrequency catheter ablation for atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2014; 7 (1): 83–9. 25. Freestone B., Chong A.Y., Nuttall S. et al. Soluble Eselectin, von Willebrand factor, soluble thrombomodulin, and total body nitrate/nitrite product as indices of endothelial damage/dysfunction in paroxysmal, persistent, and permanent atrial fibrillation. Chest. 2007; 132 (4): 1253–58. 26. Scridon A., Girerd N., Rugeri L. et al. Progressive endothelial damage revealed by multilevel von Willebrand factor plasma concentrations in atrial fibrillation patients. Europace. 2013; 15 (11): 1562–6. 27. Roldán V., Marín F., Mui~na B. et al. Plasma von Willebrand factor levels are an independent risk factor for adverse events including mortality and major bleeding in anticoagulated atrial fibrillation patients. J. Am. Coll. Cardiol. 2011. 21; 57 (25): 2496–504. 28. Girerd N., Scridon A., Bessi`ere F. et al. Periatrial epicardial fat is associated with markers of endothelial dysfunction in patients with atrial fibrillation. PLoS One. 2013; 8 (10): e77167. 29. Yongjun Q., Huanzhang S., Wenxia Z. et al. From changes in local RAAS to structural remodeling of the left atrium: A beautiful cycle in atrial fibrillation. Herz. 2015; 40 (3): 514–20. 30. Goette A., Staack T., Rocken C., Arndt M., Geller J.C., Huth C. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J. Am. Coll. Cardiol. 2000; 35 (6): 1669–77. 31. Schneider M.P., Hua T.A., Böhm M. et al. Prevention of atrial fibrillation by ReninAngiotensin system inhibition a meta-analysis. J. Am. Coll. Cardiol. 2010; 55 (21): 2299–307. 32. Huang G., Xu J.B., Liu J.X. et al. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers decrease the incidence of atrial fibrillation: a meta-analysis. Eur. J. Clin. Invest. 2011; 41 (7): 719–33. 33. Reil J.C., Hohl M., Selejan S. et al. Aldosterone promotes atrial fibrillation. Eur. Heart J. 2012; 33 (16): 2098–108. 34. Zhao J., Li J., Li W. et al. Effects of spironolactone on atrial structural remodelling in a canine model of atrial fibrillation produced by prolonged atrial pacing. Br. J. Pharmacol. 2010; 159 (8): 1584–94. 35. Swedberg K., Zannad F., McMurray J.J. et al. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure) study. J. Am. Coll. Cardiol. 2012; 59 (18): 1598–603. 36. Wozakowska-Kaplon B., Bartkowiak R., Janiszewska G. A decrease in serum aldosterone level is associated with maintenance of sinus rhythm after successful cardioversion of atrial fibrillation. Pacing Clin. Electrophysiol. 2010; 33 (5): 561–5. 37. Ogimoto A., Hamada M., Nakura J. et al. Relation between angiotensin-converting enzyme II genotype and atrial fibrillation in Japanese patients with hypertrophic cardiomyopathy. J. Hum. Genet. 2002; 47 (4): 184–9. 38. Xiao P., Ling Z., Woo K. et al. Renin-angiotensin system-related gene polymorphisms are associated with risk of atrial fibrillation. Am. Heart J. 2010; 160 (3): 496–505. 39. Ueberham L., Bollmann A., Shoemaker M.B. et al. Genetic ACE I/D polymorphism and recurrence of atrial fibrillation after catheter ablation. Circ. Arrhythm. Electrophysiol. 2013; 6 (4): 732–7. 40. Liu T., Korantzopoulos P., Xu G. et al. Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and atrial fibrillation: a meta-analysis. Europace. 2011; 13 (3): 346–54. 41. Yamashita T., Sekiguchi A., Iwasaki Y.K. et al. Recruitment of immune cells across atrial endocardium in human atrial fibrillation. Circ. J. 2010; 74 (2): 262–70. 42. Casaclang-Verzosa G., Barnes ME., Blume G. et al. C-reactive protein, left atrial volume, and atrial fibrillation: a prospective study in high-risk elderly. Echocardiography. 2010; 27 (4): 394–9. 43. Wu N., Xu B., Xiang Y. Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: a meta-analysis. Int. J. Cardiol. 2013; 169 (1): 62–72. 44. Hermida J., Lopez FL., Montes R.et al. Usefulness of high-sensitivity C-reactive protein to predict mortality in patients with atrial fibrillation (from the Atherosclerosis Risk In Communities [ARIC] Study). Am. J. Cardiol. 2012; 109 (1): 95–9. 45. Yang Q., Qi X., Li Y. The preventive effect of atorvastatin on atrial fibrillation: a meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2014; 14: 99. 46. Platonov P., Ekesbo R., Hansson A. et al. Permanent atrial fibrillation in patients without structural heart disease is not associated with signs of infection by Chlamydia pneumoniae and Helicobacter pylori. Acta Cardiol. 2008; 63 (4): 479–84. 47. Kiryu M., Niwano S., Niwano H. et al. Angiotensin II-mediated up-regulation of connective tissue growth factor promotes atrial tissue fibrosis in the canine atrial fibrillation model. Europace. 2012; 14 (8): 1206–14. 48. Rosenberg M.A., Maziarz M., Tan A.Y. et al. Circulating fibrosis biomarkers and risk of atrial fibrillation: The Cardiovascular Health Study (CHS). Am. Heart J. 2014; 167 (5): 723–8. 49. Mukherjee R., Akar J.G., Wharton J.M. et al. Plasma profiles of matrix metalloproteinases and tissue inhibitors of the metalloproteinases predict recurrence of atrial fibrillation following cardioversion. J. Cardiovasc. Transl. Res. 2013; 6 (4): 528–35. 50. Sonmez O., Ertem F.U., Vatankulu M.A. et al. Novel fibro-inflammation markers in assessing left atrial remodeling in non-valvular atrial fibrillation. Med. Sci. Monit. 2014; 20: 463–70.

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery