Assessment of pulmonary veins and left atrial flow in patients with atrial fibrillation by 4d Flow magnetic resonance imaging. Results of a pilot study

Authors: Glazkova E.Yu., Makarenko V.N., Aleksandrova S.A., Shlyappo M.A., Dariy O.Yu.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery of Ministry of Health of the Russian Federation, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2018-12-2-130-145

For citation: Glazkova E.Yu., Makarenko V.N., Aleksandrova S.A., Shlyappo M.A., Dariy O.Yu. Assessment of pulmonary veins and left atrial flow in patients with atrial fibrillation by 4D Flow magnetic resonance imaging. Results of a pilot study. Creative Cardiology. 2018; 12 (2): 130–45 (in Russ.). DOI: 10.24022/1997-3187-2018-12-2-130-145

Keywords: magnetic resonance imaging atrial fibrillation 4D Flow left atrium pulmonary veins vortex

Download
Full text:  

 

Abstract

Objective. To reveal hemodynamic changes in pulmonary veins (PV) and left atrium (LA) in patients with atrial fibrillation (AF) using 4D Flow magnetic resonance imaging (MRI).

Material and methods. 4D Flow MRI were performed in 8 healthy patients (control group – CG) and 7 patients with AF (AFG). Hemodynamic parameters of PV were evaluated and LA vortex rings were estimated in the 3 phases of the cardiac cycle.

Results. In AFG PV quantitative hemodynamic patterns were decreased (Mе [Q1; Q3]): PV peak velocity was 35.8 sm/s [23.3; 44.0] vs 41.4 sm/s [36.1; 53.7] in CG (р = 0.002); stroke forward volume of PV 12.8 ml [8.3; 18.6] vs 18.2 [13.7; 21] (р=0.014), pressure gradient 0.3 mmHg [0.2; 0.6] vs 0.6 [0.5; 0.9] (р=0.002), PV volume peak velocity 30.0 ml/s [18.6; 42.0] vs 40.9 [32.4; 51.0] (р=0.021). Significant differences included: less frequently formed LA vortexes (3 patients vs 8 in CG, р = 0.04) in the reservoir phase (2 patients vs 8 in CG, р = 0.001) in the conduit phase (0 patients vs 4 in the CG, р=0.003) in the pumping phase; changes between PVs flow (71% patients vs 12% in CG, р=0.025); linear right PVs flow (100% patients vs 25% in CG, р=0.004).

Conclusion. 4D Flow MRI revealed significant changes in AF patients flow. PVs hemodynamics patterns were reduced, PVs flow was desynchronized, and LA vortex was rarely formed. Further evaluation are required to esti- mate diagnostic value of these criteria as risk factors of thromboembolic complications.

Acknowledgements. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.

References

  1. Sulimov V.A., Golitsyn S.P., Panchenko E.P., Popov S.V., Revishvili A.Sh., Shubik Yu.V. et al. Diagnosis and treatment of atrial fibrillation. Recommendations of the Russian Society of Cardiology, All-Russian Scientific Society of Arrhythmologists and Russian Association of Cardiovascular Surgeons. Moscow; 2012 (in Russ.).

  2. Watson T., Shantsila E., Lip G.Y. Mechanisms of thrombogenesis in atrial brillation: Virchow’s triad revisited. Lancet. 2009; 373: 155–66. DOI: 10.1016/S0140-6736(09)60040-4

  3. ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation. Europace. 2006; 8 (9): 651–745. DOI: 10.1093/europace/eul097

  4. Park K.H., Son J.W., Park W.J., Lee S.H., Kim U., Park J.S. et al. Characterization of the left atrial vortex flow by two-dimensional transesophageal contrast echocardiography using particle image velocimetry. Ultrasound Med. Biol. 2011; 39 (1): 62–71. DOI: 10.1016/j.ultrasmedbio.2012.08.013

  5. Shishlyannikova L.M. Application of correlation analysis in psychology. Psychological Science and Education. 2009; 1: 98–107. DOI: 10.17759/pse (in Russ.)

  6. Fyrenius А., Wigström L., Ebbers T., Karlsson M., Engvall J., Bolger A.F. Three dimensional flow in the human left atrium. Heart. 2001; 86: 448–55. DOI: 10.1136/heart.86.4.448

  7. Koizumi R., Funamoto K., Hayase T., Kanke Y., Shibata M., Shiraishi Y., Yambe T. Numerical anal- ysis of hemodynamic changes in the left atrium due to atrial fibrillation. J. Biomech. 2015; 48: 472–8. DOI: 10.1016/j.jbiomech.2014.12.025

  8. Suwa K., Saito T., Sano M., Nobuhara M., Saotome M., Urushida T. et al. Vortex imaging in the left atrium generated by pulmonary venous inflow using phase-resolved 3D cine phase contrast MRI (4D Flow). JACC. 2013 (61); 10: 24–30. DOI: 10.1253/circj.CJ-14-0562

  9. Hong G., Kim M., Pedrizzetti G., Vannan M. Current clinical application of intracardiac flow analysis using echocardiography. J. Cardiovasc. Ultrasound. 2013; 21 (4): 155–62. DOI: 10.4250/jcu.2013.21.4.155

  10. Mihalef V., Ionasec R.I., Sharma P., Georgescu B., Voigt I., Suehling M., Comanici D. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. Interface Focus. 2011; 1: 286–96. DOI: 10.1098/rsfs.2010.0036

  11. Vedula М., George R., Younes L., Mittal R. Hemodynamics in the left atrium and its effect on ventricular flow patterns. J. Biomech. Eng. 2015; 137 (11): 8. DOI: 10.1063/1.5002120

  12. Evin M., Callaghan F.M., Defrance C., Grieve S.M., Cesare A.D., Cluzel P. et al. Left atrium MRI 4D Flow in atrial fibrillation: association with LA function. Comp. Cardiol. 2015; 42: 5–8. DOI: 10.1093/ehjci/jev304

  13. Markl M., Lee D.C., Carr M.L., Foucar Ch., Ng J., Schnell S. et al. Assessment of left atrial and left atrial appendage flow and stasis in atrial fibrillation. J. Cardiovasc. Magn. Reson. 2015; 17 (1): 245. DOI: 10.1161/CIRCIMAGING.116.004984

  14. Fluckiger J., Goldberger J., Lee D.C., Ng J., Lee R., Olsen A. et al. Quantification of left atrial flow velocity distribution in atrial fibrillation using 4D flow MRI. J. Cardiovasc. Magn. Reson. 2013; 15 (1): 261. DOI: 10.1007/s10554-015-0830-8

  15. Markl M., Lee D.C., Carr M.L., Foucar Ch., Ng J., Carr M. et al. Left atrial 4-dimensional flow magnetic resonance imaging. stasis and velocity mapping in patients with atrial fibrillation. Invest. Radiol. 2016; 51 (3): 147–54. Available at: https://www.ncbi. nlm.nih.gov/pubmed/26488375 (Accessed 2 Au- gust 2015). DOI: 10.1097/RLI.0000000000000219

  16. Lee D.C., Markl M., Ng J., Benefield B., Carr J., Carr M. et al. Three-dimensional left atrial blood flow characteristics in patients with atrial fibrillation assessed by 4D flow CMR. Eur. Heart J. Cardiovasc. Imaging. 2015; 11: 304. DOI: 10.1093/ehjci/jev304

  17. Calkoen E., Koning P., Geest R., Roos A., Westen- berg J., Roest A. Vortex flow in the left atrium in healthy controls and patients with mitral valve regurgitation after atrioventricular septal defect correction: evaluation with 4D Flow MRI and particle tracing. J. Cardiovasc. Magn. Reson. 2015; 17 (1): 125. DOI: 10.1186/1532-429X-17-S1-Q123

  18. Rademakers F.E. Magnetic resonance imaging in cardiology. Lancet. 2003; 361: 359–60. DOI: 10.1016/S0140-6736(03)12440-3

  19. Rathi V.K., Doyle M., Yamrozik J., Williams R.B., Caruppannan K., Truman C. et al. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J. Cardiovasc. Magn. Reson. 2012; 10: 36. DOI: 10.1186/1532-429X-10-36

  20. Duarte R., Fernandez G. Assessment of left ventricular diastolic function by MR: why, how and when. Insights Imaging. 2010; 1: 183–92. DOI: 10.1007/s13244-010-0026-7

  21. Nagueh Sh., Smiseth O., Appleton Ch. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the european association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 2016; 29: 277–314. DOI: 10.1016/j.echo.2016.01.011

  22. Jae K.Oh., Sung-Ji P., Nagueh Sh. Established and novel clinical applications of diastolic function assessment by echocardiography. Circ. Cardiovasc. Imaging. 2011; 4: 444–55. DOI: 10.1161/CIRCIMAGING.110.961623

  23. Mottram P., Marwick T. Assessment of diastolic function: what the general cardiologist needs to know. Heart. 2005; 91 (5): 681–95. DOI: 10.1136/hrt.2003.029413

  24. Golukhova E.Z., Gromova O.I., Arakelyan M.G., Bulaeva N.I., Zholbaeva A.Z., Mashina T.V. et al. Risk factors of left atrial thrombus and/or thromboembolism in patients with nonvalvular, nonishemic atrial fibrillation. Creative Cardiology. 2017; 11 (3): 262–72. DOI: 10.24022/1997-3187-2017-11-3-262-272 (in Russ.)

  25. Bockeria O.L., Biniashvili M.B., Mishchenko A.B., Yurkulieva G.A. Surgical prevention of thromboembolism in atrial fibrillation. The prospect of domestic systems for the left atrial appendage surgical isolation. Annals of Arrhythmology (Annaly Aritmologii). 2017; 14 (3): 142–9. DOI: 10.15275/annaritmol.2017.3.3 (in Russ.)

  26. Markl M., Fluckiger J., Lee D.C., Ng J., Goldberger J.J. Velocity quantification by electrocardiography-gated phase contrast magnetic resonance imaging in patients with cardiac arrhythmia: a simulation study based on real time transesophageal echocardiography data in atrial fibrillation. J. Comput. Assist. Tomogr. 2015; 39 (3): 422–7. DOI: 10.1161/circimaging.116.004984

About Authors

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery