Osteoporosis as a risk factor for perioperative complications in elderly patients with coronary artery disease after cardiac surgery

Authors: Golukhova E.Z., Magomedova N.M., Kazanovskaya S.N.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2020-14-4-359-367

For citation: Golukhova E.Z., Magomedova N.M., Kazanovskaya S.N. steoporosis as a risk factor for perioperative complications in elderly patients with coronary artery disease after cardiac surgery. Creative Cardiology. 2020; 14 (4): 359–67 (in Russ.). DOI: 10.24022/1997-3187-2020-14-4-359-367

Received / Accepted:  20.11.2020 / 27.11.2020

Keywords: osteoporosis bone mineral density coronary artery disease cardiovascular diseases coronary artery bypass grafting sternal instability

Download
Full text:  

 

Abstract

Osteoporosis and coronary artery disease (CAD) are diseases that lead to significant morbidity and mortality in the elderly. Cardiovascular diseases (CVD) and osteoporosis have a significant impact on the patient's condition and quality of life and, most importantly, on life expectancy compared to the general population. Currently, there is evidence that process of calcification has common mechanisms in atherosclerosis and osteoporosis. Calcification of the coronary arteries plays an important role in the development of CAD and is a predictor of cardiovascular risk and mortality. In recent years, the number of cardiac surgeries is increasing, especially the number of operations of coronary artery bypass grafting (CABG), in elderly patients who, as a rule, have many concomitant diseases. One of the most common and convenient approaches for performing cardiac surgery is the median sternotomy, which provides optimal access to the heart and mediastinum. However, complications from the sternum (instability of the sternum, complicated by infection and mediastinitis) occur in a significant number of operated patients. It is a very significant problem for patients and health system. Early diagnosis and timely treatment of osteoporosis is extremely relevant for this group of patients in order to reduce the risk of postoperative complications, reduce the number of repeated operations. This review analyzes the data of modern studies, evaluates the tactics of treatment of patients with coronary heart disease with concomitant osteoporosis.

References

  1. Chen S.-J., Lin C.-S., Lin C.-L., Kao C.-H. Osteoporosis is associated with high risk for coronary heart disease. A population-based cohort study. Medicine (Baltimore). 2015; 94 (27); e1146. DOI: 10.1097/MD.0000000000001146
  2. World Congress on Osteoporosis and 10th European Congress of Clinical and Economic aspects of Osteoporosis and Osteoarthritis. Osteoporosis Int. 2010; 21 (5): 1–6. DOI: 10.1007/s00198-010-1244-z
  3. Laroche M., Pecourneau V., Blain H., Breuil V., Chapurlat R., Cortet B. et al. Osteoporosis and ischemic cardiovascular disease. Joint Bone Spine. 2017; 84 (4): 427–32. DOI: 10.1016/j.jbspin.2016.09.022
  4. Farhat G.N., Cauley J.A. The link between osteoporosis and cardiovascular disease. Clin. Cases Miner Bone Metab. 2008; 5: 19–34.
  5. Anagnostis P., Karagiannis A., Kakafika A.I. et al. Atherosclerosis and osteoporosis: age-dependent degenerative processes or related entities? Osteoporos Int. 2009; 20: 197–207.
  6. Szekanecz Z., Raterman H.G., Pethö1 Z., Lems W.F. Common mechanisms and holistic care in atherosclerosis and osteoporosis. Arthritis Research & Therapy. 2019; 21: 15. DOI: 10.1186/ s13075-018-1805-7
  7. Wade S.W., Strader C., Fitzpatrick L.A., Anthony M.S., O’Malley C.D. Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos. 2014; 9: 182.
  8. Wang X., Le E.P.V., Rajani N.K., Hudson-Peacock N.J., Pavey H., Tarkin J.M. et al. A zero coronary artery calcium score in patients with stable chest pain is associated with a good prognosis, despite risk of non-calcified plaques. Open Hear. 2019; 6: e000945. DOI: 10.1136/openhrt-2018- 000945
  9. García-Gómez M., Vilahur G. Osteoporosis and vascular calcification: a shared scenario. Clin. Investig. Arterioscler. 2020; 32 (1): 33–42. DOI: 10.1016/j.arteri.2019.03.008
  10. Sinnott B., Syed I., Sevrukov A., Barengolts E. Coronary calcification and osteoporosis in men and postmenopausal women are independent processes associated with aging. Calcif. Tissue Int. 2006; 78: 195–202. DOI: 10.1007/s00223-005-0244-z
  11. Nakahara T., Dweck M.R., Narula N., Pisapia D., Narula J., Strauss H.W. Coronary artery calcification: From mechanism to molecular imaging. JACC Cardiovasc. Imaging. 2017; 10: 582–93.
  12. New S.E., Aikawa E. Cardiovascular calcification: an inflammatory disease. Circ. J. 2011; 75: 1305–13.
  13. Ye C., Xu M., Wang S., Jiang S., Chen X., Zhou X., He R. Decreased bone mineral density is an independent predictor for the development of atherosclerosis: a systematic review and meta-analysis. PLoS ONE. 2016; 11: e0154740. DOI: 10.1371/journal.pone.0154740
  14. Zhang Y., Feng B. Systematic review and metaanalysis for the association of bone mineral density and osteoporosis/osteopenia with vascular calcification in women. Int. J. Rheum. Dis. 2016; 20: 154–60. DOI: 10.1111/1756-185X.12842
  15. Oliver M.F., Samuel E., Morley P., Young G.B., Kapur P.L. Detection of coronary-artery calcification during life. Lancet. 1964; 1: 891–5.
  16. Ahmadi N., Mao S.S., Hajsadeghi F., Arnold B., Kiramijyan S., Gao Y., Flores F., Azen S., Budoff M. The relation of low levels of bone mineral density with coronary artery calcium and mortality. Osteoporos. Int. 2018; 29 (7): 1609–16. DOI: 10.1007/s00198-018-4524-7
  17. Mukai H., Dai L., Chen Z., Lindholm B., Ripsweden J., Brismar T.B. et al. Inverse J-shaped relation between coronary arterial calcium density and mortality in advanced chronic kidney disease. Nephrology Dialysis Transplantation. 2020; 35 (7): 1202–11. DOI: 10.1093/ndt/gfy352
  18. Leber A.W., Knez A., Becker A., Becker C., Von Ziegler F., Nikolaou K. et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques. J. Am. Coll. Cardiol. 2004; 43: 1241–7. DOI: 10.1016/j.jacc.2003.10.059
  19. Budoff M.J., Young R., Burke G., Jeffrey Carr J., Detrano R.C., Folsom A.R. et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: The multi-ethnic study of atherosclerosis (mesa). Eur. Heart J. 2018; 39: 2401–8. DOI: 10.1093/eurheartj/ehy217
  20. Thomas I.C., Forbang N.I., Criqui M.H. The evolving view of coronary artery calcium and cardiovascular disease risk. Clin. Cardiol. 2018; 41: 144–1500.
  21. Chuang T.L., Koo M., Wang Y.F. Association of bone mineral density and coronary artery calcification in patients with osteopenia and osteoporosis. Diagnostics (Basel). 2020; 10 (9): 699. DOI: 10.3390/diagnostics10090699
  22. Voronkina A.V., Raskina T.A., Letaeva M.V., Malyuta E.B., Kokov A.N., Barbarash O.L. Association of mineral bone density and risk of osteporotic fractures with coronary and carotid atherosclerosis in male patients with stable angina. Fundamental and Clinical Medicine. 2018; 3 (1): 51–62. DOI: 10.23946/2500-0764-2018-3-1-51- 62 (in Russ.)
  23. Lesnyak O.M., Benevolenskaya L.I. Osteoporosis. Diagnosis, prevention, and treatment. Clinical Guidelines. 2nd ed. Moscow; 2009 (in Russ.)
  24. Marcovitz P.A., Tran H.H., Franklin B.A. et al. Usefulness of bone mineral density to predict significant coronary artery disease. Am. J. Cardiol. 2005; 96: 1059–63.
  25. Wiklund P., Nordstrom A., Jansson J.H. et al. Low bone mineral density is associated with increased risk for myocardial infarction in men and women. Osteoporos. Int. 2012; 23: 963–70.
  26. El-Ansary D., Waddington G., Denehy L., McManus M., Fuller L., Katijjahbe A., Adams R. Physical assessment of sternal stability following a median sternotomy for cardiac surgery: validity and reliability of the strnal instability scale (SIS). Int. J. Phys. Ther. Rehab. 2018; 4: 140. DOI: 10.15344/2455-7498/2018/140
  27. Kirbas A., Celik S., Gurer O., Yildiz Y., Isik O. Sternal wrapping for the prevention of sternal morbidity in elderly osteoporotic patients undergoing median sternotomy. Tex. Heart Inst. J. 2011; 38 (2): 132–6. PMCID: PMC3066823.
  28. Robicsek F. Postoperative sterno-mediastinitis. Am. Surg. 2000; 66 (2): 184–92.
  29. Yusuf E., Chan M., Renz N., Trampuz A. Current perspectives on diagnosis and management of sternal wound infections. Infect. Drug. Resist. 2018; 11: 961–8. DOI: 0.2147/IDR.S130172
  30. Liang M., Liu J., Miao Q., Ma G., Liu X., Li X., Zhang C. Use of freeze-dried bone allografts in osteoporotic patients undergoing median sternotomy. Cell Tissue Bank. 2018; 19: 27–33. DOI: 10.1007/s10561-017-9670-1
  31. El-Ansary D., Adams R., Toms L., Elkins M.R. Sternal instability following coronary artery bypass grafting. Physiotherapy Theory and Practice. 2009; 16 (1): 27–33. DOI: 10.1080/095939800307584.
  32. Eklund A.M., Lyytikäinen O., Klemets P., Huotari K., Anttila V.-J., Werkkala K.A. et al. Mediastinitis after more than 10,000 cardiac surgical procedures. Ann. Thorac. Surg. 2006; 82: 1784 –9. 33. Juhl A.A., Hody S., Videbaek T.S., Damsgaard T.E., Nielsen P.H. Deep sternal wound infection after open-heart surgery: a 13-year single institution analysis. Ann. Thorac. Cardiovasc. Surg. 2017. DOI: 10.5761/atcs.oa.16-00196
  33. Lazar H.L., Salm T.V., Engelman R., Orgill D., Gordon S. J. Thorac. Cardiovasc. Surg. 2016; 152 (4): 962–72. DOI: 10.1016/j.jtcvs.2016.01.060
  34. Sharma B.P., Agarwa D., Dangayach K.K., Bakliwal A. Deep sternal wound infection after coronary artery bypass graft (a comparative study between PMMC v/s omentum pedical flap). IOSR Journal of Dental and Medical Sciences (IOSRJDMS). 2015; 14 (10): 111–14.
  35. Blansfield H.N., Andrew C.B. Osteoporosis: a factor in mortality following cardiac surgery. Conn. Med. 2000; 64 (2): 71–3.
  36. Fedak P.W., Kieser T.M., Maitland A.M., Holland M., Kasatkin A., Leblanc P. et al. Adhesiveenhanced sternal closure to improve postoperative functional recovery: a pilot, randomized controlled trial. Ann. Thorac. Surg. 2011; 92 (4): 1444–50. DOI: 10.1016/j.athoracsur.2011.05.014
  37. Lai S.-W. Association between osteoporosis and statins therapy. Ann. Rheum. Dis. 2019. DOI: 10.1136/annrheumdis-2019-216464
  38. An T., Hao J., Sun S., Li R., Yang M., Cheng G. et al. Efficacy of statins for osteoporosis: a systematic review and meta-analysis. Osteoporos. Int. 2017; 28 (1): 47–57. DOI: 10.1007/s00198-016-3844-8
  39. Leutner M., Matzhold C., Bellach L., Deischinger C., Harreiter S., Thurner S. et al. Diagnosis of osteoporosis in statin-treated patients is dosedependent. Ann. Rheum. Dis. 2019; 78 (12): 1706–11. DOI: 10.1136/annrheumdis-2019- 215714
  40. Puttnam R., Davis B.R., Pressel S.L., Whelton P.K., Cushman W.C., Louis G.T. et al. Antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT) collaborative research group association of 3 different antihypertensive medications with hip and pelvic fracture risk in older adults: Secondary analysis of a randomized clinical trial. JAMA Intern. Med. 2017; 177: 67–76.
  41. Lim L.S., Fink H.A., Blackwell T., Taylor B.C., Ensrud K.E. Loop diuretic use and rates of hip bone loss and risk of falls and fractures in older women. J. Am. Geriatr. Soc. 2009; 57 (5): 855–62. DOI: 10.1111/j.1532-5415.2009.02195.x
  42. Torstensson M., Hansen A.H., Leth-Moller K., Jorgensen T.S., Sahlberg M., Andersson C. et al. Danish register-based study on the association between specific cardiovascular drugs and fragility fractures. BMJ Open. 2015; 5 (12): e009522. DOI: 10.1136/bmjopen-2015-009522
  43. Khosla S., Drake M.T., Volkman T.L., Thicke B.S., Achenbach S.J., Atkinson E.J. et al. Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism. J. Clin. Invest. 2018; 128 (11): 4832–42. DOI: 10.1172/JCI122151
  44. Toulis K.A., Stagnaro-Green A., Negro R. Maternal subclinical hypothyroidsm and gestational diabetes mellitus: A meta-analysis. Endocr. Pract. 2014; 20: 703–14. DOI: 10.4158/EP13440.RA
  45. Barzilay J.I., Davis B.R., Pressel S.L., Ghosh A., Puttnam R., Margolis K.L. et al. The impact of antihypertensive medications on bone mineral density and fracture risk. Curr. Cardiol. Rep. 2017; 19: 76. DOI: 10.1007/s11886-017-0888-0

About Authors

  • Elena Z. Golukhova, Dr. Med. Sc., Professor, Academician of RAS, Chief of Chair, Acting Head of Bakoulev National Medical Research Center for Cardiovascular Surgery, Deputy Chief Editor of the Journal, ORCID
  • Nargiz M. Magomedova, Cand. Med. Sc., Cardiologist, Researcher, ORCID
  • Svetlana N. Kazanovskaya, Researcher, ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery