Risk factors of graft thrombosis in patients with coronary artery disease in the long term after coronary artery bypass grafting
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Original articles
DOI:
For citation: Kubova М.Ch., Bulaeva N.I., Ruzina E.V., Golukhova Е.Z. Risk factors of graft thrombosis in patients with coronary artery disease in the long term after coronary artery bypass grafting. Creative Cardiology. 2021; 15 (2): 180–93 (in Russ.). DOI: 10.24022/1997-3187-2021-15-2-180-193
Received / Accepted: 01.06.2021 / 25.06.2021
Keywords: coronary artery bypass grafting coronary artery disease myocardial revascularization
Abstract
Objectives. To identify the predictors of graft failure after 6–12 months after coronary artery bypass grafting (CABG).
Material and methods. This is a prospective, observational, single-center, cohort study. We examined 127 patients who underwent CABG. The 98 (77%) patients underwent angiography in 6–12 months post-CABG.
Results. Only 9 (9.2%) patients had venous grafts failure (VGF) (stenosis ≥75% or occlusion) in late postoperative period. There were no signs of arterial conduits failure. The VGF in long-term period was associated with a history of myocardial infarction (relative risk (RR) 1.01; 0.55–1.85), stroke (RR 2.15; 0.29–15 , 96), diabetes mellitus (RR 1.16; 0.9–1.49), multivessel coronary lesions (RR 1.13; 0.78–1.63). Patients with VGF had higher levels of type 1 plasminogen activator inhibitor (p=0.0012), antithrombin-III (p=0.0192), P-selectin (p=0.0001), C-reactive protein (p=0.0001), interleukin-6 (p=0.0001) early after surgery (1–7 days). Higher levels of platelet aggregation before discharge (p=0.0745) and at late follow-up period (p=0.045); higher total cholesterol values late after CABG (p=0.06) compared with patients without VGF. Univariate regression analysis revealed critical values of the degree of platelet aggregation with 5 μM adenosine diphosphate (ADP) with a significant effect on the development of VGF at 7th day after surgery 34.5% (AUC 0.574; 95% confidence interval (CI) 0.463–0.686; p=0.0126) and 6–12 months after surgery 51.5% (AUC 0.626; 95% CI 0.38–0.872; p=0.0253).
Conclusions. The VGF after CABG is associated with a higher level of inflammation in the early postoperative period, insufficient suppression of platelet aggregation activity, and unsatisfactory correction of the lipid profile. A history of diabetes mellitus, myocardial infarction and stroke also increases the risk of VGF.
References
- Hillis L.D., Smith P.K., Anderson J.L., Bittl J.A., Bridges C.R., Byrne J.G. et al. 2011 ACCF/AHA Guideline for coronary artery bypass graft surgery. Circulation. 2011; 124: 2610–42. DOI: 10.1016/j.jtcvs.2012.04.001
- Yusuf S., Zucker D., Peduzzi P., Fisher L.D., Takaro T., Kennedy J.W. et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the coronary artery bypass graft surgery trialists collaboration. Lancet. 1994; 344: 563–7. DOI: 10.1016/S0140-6736(94)91963-1
- Davis K.B., Chaitman B., Ryan T., Bittner V., Kennedy J.W. Comparison of 15-year survival for men and women after initial medical or surgical treatment for coronary artery disease. J. Am. Coll. Cardiol. 1995; 25: 1000–9. DOI: 10.1016/0735-1097(94)00518-u
- Halabi A.R., Alexander J.H., Shaw L.K., Lorenz T.J., Liao L., Kong D.F. et al. Relation of early saphenous vein graft failure to outcomes following coronary artery bypass surgery. Am. J. Cardiol. 2005; 96: 1254–7. DOI: 10.1016/j.amjcard.2005.06.067
- Lopes R.D., Mehta R.H., Hafley G.E., Williams J.B., Mack M.J., Peterson E.D. et al. Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation. 2012; 125: 749–7. DOI: 10.1161/CIRCULATIONAHA.111.040311
- Allen K., Cheng D., Cohn W., Connolly M., Edgerton J., Falk V. et al. Endoscopic vascular harvest in coronary artery bypass grafting surgery: a consensus statement of the international society of minimally invasive cardiothoracic surgery (ISMICS) 2005. Innovations. 2005; 1: 51–9. DOI: 10.1097/01.gim.0000196315.32179.82
- Bjork V.O., Ekestrom S., Henze A., Ivert T., Landou C. Early and late patency of aortocoronary vein grafts. Scand. J. Thorac. Cardiovasc. Surg. 1981; 15: 11–21. DOI: 10.3109/14017438109101020
- Cataldo G., Braga M., Pirotta N., Lavezzari M., Rovelli F., Marubini E. Factors influencing 1-year patency of coronary artery saphenous vein grafts. Circulation. 1993; 88 (II): 93–5.
- Roth J.A., Cukingnan R.A., Brown B.G., Gocka E., Carey J.S. Factors influencing patency of saphenous vein grafts. Ann. Thorac. Surg. 1979; 28: 176–5. DOI: 10.1016/s0003-4975(10)63777-0
- Fitzgibbon G.M., Kafka H.P., Leach A.J., Keon W.J., Hooper G.D., Burton J.R. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J. Am. Coll. Cardiol. 1996; 28: 616–10. DOI: 10.1016/0735-1097(96)00206-9
- Goldman S., Zadina K., Moritz T., Ovitt T., Sethi G., Copeland J.G. et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a department of veterans affairs cooperative study. J. Am. Coll. Cardiol. 2004; 44: 2149–6. DOI: 10.1016/j.jacc.2004.08.064
- Shah P.J., Gordon I., Fuller J., Seevanayagam S., Rosalion A., Tatoulis J. et al. Factors affecting saphenous vein graft patency: clinical and angiographic study in 1402 symptomatic patients operated on between 1977 and 1999. J. Thorac. Cardiovasc Surg. 2003; 126: 1972–7. DOI: 10.1016/s0022-5223(03)01276-5 13. Paz M.A., Lupon J., Bosch X., Pomar J.L., Sanz G. Predictors of early saphenous vein aortocoronary bypass graft occlusion. Ann. Thorac. Surg. 1993; 56: 1101–6. DOI: 10.1016/0003-4975(95)90024-1
- Domanski M.J., Borkowf C.B., Campeau L., Knatterud G.L., White C., Hoogwerf B. et al. Prognostic factors for atherosclerosis progression in saphenous vein grafts: The postcoronary artery bypass graft (POST-CABG) trial. J. Am. Coll. Cardiol. 2000; 36: 1877–7. DOI: 10.1016/s0735- 1097(00)00973-6
- Harskamp R.E., Lopes R.D., Baisden C.E., de Winter R.J., Alexander J.H. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann. Surg. 2013; 257: 824–9. DOI: 10.1097/SLA.0b013e318288c38d
- Goldman S., Zadina K., Krasnicka B., Moritz T., Sethi G., Copeland J. et al. Predictors of graft patency 3 years after coronary artery bypass graft surgery. J. Am. Coll. Cardiol. 1997; 29: 1563–5. DOI: 10.1016/s0735-1097(97)82539-9
- Alexander J.H., Hafley G., Harrington R.A., Peterson E.D., Ferguson T.B. Jr., Lorenz T.J. et al. Efficacy and safety of difoligide, an e2f transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA. 2005; 294: 2446–8. DOI: 10.1001/jama.294.19.2446
- Mehta R.H., Ferguson T.B., Lopes R.D., Hafley G.E., Mack M.J., Kouchoukos N.T. et al. Saphenous vein grafts with multiple versus single distal targets in patients undergoing coronary artery bypass surgery: one-year graft failure and five-year outcomes from the project of ex-vivo vein graft engineering via transfection (PREVENT) IV trial. Circulation. 2011; 124: 280–8. DOI: 10.1161/CIRCULATIONAHA.110.991299 19. Boos D.D., Stefanski L.A., Wu Y. Fast FSR variable selection with applications to clinical trials. Biometrics. 2009; 65: 692–8. DOI: 10.1111/j.1541- 0420.2008.01127.x
- Sabik J.F., III, Lytle B.W., Blackstone E.H., Houghtaling P.L., Cosgrove D.M. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann. Thorac. Surg. 2005; 79: 544–7. DOI: 10.1016/j.athoracsur.2004.07.047
- Parang P., Arora R. Coronary vein graft disease: pathogenesis and prevention. Can. J. Cardiol. 191 Креативная кардиология. 2021; 15 (2) DOI: 10.24022/1997-3187-2021-15-2-1-193 Оригинальные статьи 2009; 25(e): 57–5. DOI: 10.1016/s0828- 282x(09)70486-6
- Wan I.Y.P., Arifi A.A., Wan S., Yip J.H.Y., Sihoe A.D.L., Thung K.H. et al. Beating heart revascularization with or without cardiopulmonary bypass: evaluation of inflammatory response in a prospective randomized study. J. Thorac. Cardiovasc. Surg. 2004; 127: 1624–7. DOI: 10.1016/j.jtcvs.2003.10.043
- Czerny M., Baumer H., Kilo J., Lassnigg A., Hamwi A., Vukovich T. et al. Inflammatory response and myocardial injury following coronary artery bypass grafting with or without cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 2000; 17: 737–5. DOI: 10.1016/s1010-7940(00)00420-6
- Greilich P.E., Brouse C.F., Rinder H.M., Jessen M.E., Rinder C.S., Eberhart R.C. et al. Monocyte activation in on-pump versus off-pump coronary artery bypass surgery. J. Cardiothorac. Vasc. Anesth. 2008; 22: 361–7. DOI: 10.1053/j.jvca.2007.08.009
- Nesher N., Frolkis I., Vardi M., Sheinberg N., Bakir I., Caselman F. et al. Higher levels of serum cytokines and myocardial tissue markers during on-pump versus off-pump coronary artery bypass surgery. J. Card. Surg. 2006; 21: 395–7. DOI: 10.1111/j.1540-8191.2006.00272.x
- Ghorbel M.T., Cherif M., Mokhtari A., Bruno V.D., Caputo M., Angelini G.D. Off-pump coronary artery bypass surgery is associated with fewer gene expression changes in the human myocardium in comparison with on-pump surgery. Physiol. Genomics. 2010; 42: 67–8. DOI: 10.1152/physiolgenomics.00174.2009
- Rogers C.A., Pike K., Angelini G.D., Reeves B.C., Glauber M., Ferrarini M., Murphy G.J. An open randomized controlled trial of median sternotomy versus anterolateral left thoracotomy on morbidity and health care resource use in patients having offpump coronary artery bypass surgery: the Sternotomy Versus Thoracotomy (STET) trial. J. Thorac. Cardiovasc. Surg. 2013; 146: 306–3. DOI: 10.1016/j.jtcvs.2012.04.020
- Meng F., Ma J., Wang W., Lin B. Meta-analysis of interleukin 6, 8, and 10 between off-pump and onpump coronary artery bypass groups. Bosn. J. Basic. Med. Sci. 2017; 17: 85–9. DOI: 10.17305/bjbms.2017.1505
- Jongman R.M., Zijlstra J.G., Kok W.F., van Harten A.E., Mariani M.A., Moser J. et al. Offpump CABG surgery reduces systemic inflammation compared with on-pump surgery but does not change systemic endothelial responses: a prospective randomized study. Shock. 2014; 42: 121–7. DOI: 10.1097/SHK.0000000000000190
- Van Straten A.H.M., Soliman Hamad M.A., van Zundert A.J., Martens E.J., Schonberger J.P.A.M., de Wolf A.M. Preoperative C-reactive protein levels to predict early and late mortalities after coronary artery bypass surgery: eight years of follow-up. J. Thorac. Cardiovasc. Surg. 2009; 138: 954–4. DOI: 10.1016/j.jtcvs.2009.03.050
- Lamy A., Devereaux P.J., Prabhakaran D., Taggart D.P., Hu S., Paolasso E. et al. Off-pump or onpump coronary-artery bypass grafting at 30 days. N. Engl. J. Med. 2012; 366: 1489–8. DOI: 10.1056/NEJMoa1200388
- Goldman S., Copeland J., Moritz T., Henderson W., Zadina K., Ovitt T. et al. Saphenous vein graft patency 1 year after coronary artery bypass surgery and of antiplatelet therapy. Results of a Veterans Administration cooperative study. Circulation. 1989; 80: 1190–7. DOI: 10.1161/01.cir.80.5.1190
- Collaborative overview of randomised trials of antiplatelet therapy-III: reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients. BMJ. 1994; 308: 235–11. DOI: 10.1136/bmj.308.6923.235
- Gao G., Zheng Z., Pi Y., Lu B., Lu J., Hu S. Aspirin plus clopidogrel therapy increases early venous graft patency after coronary artery bypass surgery a single-center, randomized, controlled trial. J. Am. Coll. Cardiol. 2010; 56: 1639–4. DOI: 10.1016/j.jacc.2010.03.104
- Williams J.B., Lopes R.D., Hafley G.E., Bruce Ferguson T., Jr., Mack M.J., Michael Gibson C. et al. Relationship between postoperative clopidogrel use and subsequent angiographic and clinical outcomes following coronary artery bypass grafting. J. Thromb. Thrombolysis. 2013; 36: 384–9. DOI: 10.1007/s11239-013-0904-1
- Gurbuz A.T., Zia A.A., Vuran A.C., Cui H., Aytac A. Postoperative clopidogrel improves midterm outcome after off-pump coronary artery bypass graft surgery: a prospective study. Eur. J. Cardiothorac. Surg. 2006; 29: 5. DOI: 10.1016/j.ejcts.2005.11.033
- Jneid H., Anderson J.L., Wright R.S., Adams C.D., Bridges C.R., Casey D.E., Jr. et al. 2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/non-st-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update. Circulation. 2012; 126: 875–35. DOI: 10.1161/CIR.0b013e318256f1e0
- Kislyak O.A., Atakanova A.N., Taras E.S., Kasatova T.B. Antithrombotic therapy in patients with chronic coronary syndromes and atrial fibrillation in real clinical practice. Medical Care. 2020; 4: 28–9 (in Russ.). DOI: 10.24412/2071-5315-2020-12268
- Hess C.N., Lopes R.D., Gibson C.M., Hager R., Wojdyla D.M., Englum B.R., Alexander J.H. Saphenous vein graft failure after coronary artery bypass surgery: insights from PREVENT IV. Circulation. 2014; 130 (17): 1445–6. DOI: 10.1161/circulationaha.113.008193
- Lytle B.W., Loop F.D., Taylor P.C., Simpfendorfer C., Kramer J.R., Ratliff N.B. et al. Vein graft 192 Creative Cardiology. 2021; 15 (2) DOI: 10.24022/1997-3187-2021-15-2-180-193
- Lytle B.W., Loop F.D., Taylor P.C., Goormastic M., Stewart R.W., Novoa R. et al. The effect of coronary reoperation on the survival of patients with stenoses in saphenous vein bypass grafts to coronary arteries. J. Thorac. Cardiovasc. Surg. 1993; 105: 605–7.
- Desai N.D., Cohen E.A., Naylor C.D., Fremes S.E. A randomized comparison of radialartery and saphenous-vein coronary bypass grafts. N. Engl. J. Med. 2004; 351: 2302–7. DOI: 10.1056/NEJMoa040982
- Cameron A., Kemp H.G., Jr., Green G.E. Bypass surgery with the internal mammary artery graft: 15 year follow-up. Circulation. 1986; 74 (III): 30–6.