Congenital long QT syndrome. Clinical picture, molecular-genetic variants in symptomatic children

Authors: Kondrykinskiy E.L., Zakirov M.M., Kondrat’eva I.V., Kulakova E.N., Kovalev S.A., Khomarova E.V., Zhidkov M.L., Lesovaya E.E., Lesovoy V.V.

Company: 1Voronezh Regional Children's Clinical Hospital No. 1, Voronezh, Russian Federation
2 Burdenko Voronezh State Medical University, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2021-15-2-207-225

For citation: Kondrykinskiy E.L., Zakirov M.M., Kondrat'eva I.V., Kulakova E.N., Kovalev S.A., Khomarova E.V., Zhidkov M.L., Lesovaya E.E., Lesovoy V.V. Congenital long QT syndrome. Creative Cardiology. 2021; 15 (2): 207–25 (in Russ.). DOI: 10.24022/1997-3187-2021-15-2-207-225

Received / Accepted:  05.06.2021 / 24.06.2021

Keywords: cardiac arrest cardiac arrhythmia children canalopathy congenital long QT syndrome cardiomyocyte ion channel sudden cardiac death

Download
Full text:  

 

Abstract

Introduction. The congenital long QT syndrome (LQTS) is a disorder of ventricular myocardial repolarization characterized by a prolonged QT interval on the electrocar-diogram (ECG) that can lead to sчЇymptomatic ventricular arrhythmias and an increased risk of sudden cardiac death (SCD). These LQTS-triggered symptoms stem from a characteristic life-threatening cardiac arrhythmia known as torsades de pointes or «twisting of the points». LQTS can be congenital or acquired. Objective. The paper aims at studying the circumstances of the diagnosis of congenital LQT syndrome in children of the Voronezh Region, analyzing the age and clinical pecu-liarities of the disease manifestations, as well as ECG parameters and subtypes of the syndrome in children with congenital long QT.

Material and methods. The article presents the results of a retrospective analysis of the circumstances of the disease detection; family history; clinical presentation; results of ECG, echocardiographic (EchoCG) and Holter monitoring findings (HM); survival of children with LQTS according to medical histories and outpatient records of Voronezh Regional Children's Clinical Hospital No. 1. The study included 13 children with con-genital long QT syndrome. The patients were divided into 2 groups: 1st – symptomatic children, 2nd – asymptomatic.

Results. All children of the 1st group were treated with beta-blockers. Two children di-agnosed with Jervell and Lange-Nielson (JLNS) and with 1 molecular genetic variant of the RomanoμWard long QT syndrome were implanted with cardioverter defibrillators. Not a single child died during the observation period from 2013 to 2020.

Conclusions. The congenital long QT syndrome in children is a rare hereditary cardiac disease characterized by an increased risk of sudden cardiac death. There is an obvious need for a thorough analysis of outpatient ECGs in compliance with the methodology for determining the QT interval.

References

  1. Schwartz P.J., Ackerman M.J. The long QT syndrome: A transatlantic clinical approach to diagnosis and therapy. Eur. Heart J. 2013; 34 (40): 3109–16. DOI: 10.1093/eurheartj/eht089
  2. Viskin S., Alla S.R., Barron H.V., Heller K., Saxon L., Kitzis I. et al. Mode of onset of torsade de pointes in congenital long QT sy22-27ndrome. J. Am. Coll. Cardiol. 1996; 28 (5): 1262–8. DOI: 10.1016/S0735-1097(96)00311-7
  3. Priori S.G., Schwartz P.J., Napolitano C., Bloise R., Ronchetti E., Grillo M. et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 2003; 348 (19): 1866–74. DOI: 10.1056/nejmoa022147
  4. Roden D.M. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 2004; 350 (10): 1013–22. DOI: 10.1056/nejmra032426
  5. Priori S.G., Wilde A.A., Horie M., Cho Y., Behr E.R., Berul C. et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of pa-tients with inherited primary arrhythmia syndromes: Document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013; 10 (12): 1932–63. DOI: 10.1016/j.hrthm.2013.05.014
  6. Schwartz P.J., Ackerman M.J., George A.L., Wilde A.A.M. Impact of genetics on the clinical management of channelopathies. J. Am. Coll. Cardiol. 2013; 62 (3): 169–80. DOI: 10.1016/j.jacc.2013.04.044
  7. Schwartz P.J., Stramba-Badiale M., Crotti L., Pedrazzini M., Besana A., Bosi G. et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009; 120 (18): 1761–7. DOI: 10.1161/CIRCULATIONAHA.109.863209
  8. Meissner F. Deaf and deaf education. Leipzig and Heidelberg; 1856.
  9. Jervell A., Lange-Nielsen F. Congenital deafmutism, functional heart disease with pro-longation of the Q-T interval, and sudden death. Am. Heart J. 1957; 54 (1): 59–68. DOI: 10.1016/0002- 8703(57)90079-0
  10. Mizusawa Y., Horie M., Wilde A.A.M. Genetic and clinical advances in congenital long QT syndrome. Circ. J. 2014; 78 (12): 2827–33. DOI: 10.1253/circj.CJ-14-0905
  11. Rohatgi R.K., Sugrue A., Bos J.M., Cannon B.C., Asirvatham S.J., Moir C. et al. Con-temporary outcomes in patients with long QT syndrome. J. Am. Coll. Cardiol. 2017; 70 (4): 453–62. DOI: 10.1016/j.jacc.2017.05.046
  12. Stenson P.D., Ball E.V., Mort M., Phillips A.D., Shaw K., Cooper D.N. The human gene mutation database (HGMD) and its exploitation in the fields 223 Креативная кардиология. 2021; 15 (2) DOI: 10.24022/1997-3187-2021-15-2-207-225
  13. Boсkeria O.L., Akhobekov A.A. Ion channels and their role in the development of car-diac arrhythmias. Annals of Arrhythmology. 2014; 11 (3): 176–84 (in Russ.). DOI: 10.15275/annaritmol.2014.3.6
  14. Chen L., Sampson K.J., Kass R.S. Cardiac delayed rectifier potassium channels in health and disease. Card. Electrophysiol. Clin. 2016; 8 (2): 307–22. DOI: 10.1016/j.ccep.2016.01.004
  15. Kuenze G., Duran A.M., Woods H., Brewer K.R., McDonald E.F., Vanoye C.G. et al. Upgraded molecular models of the human KCNQ1 potassium channel. PLoS One. 2019; 14 (9). DOI: 10.1371/journal.pone.0220415
  16. Abbott G.W. Biology of the KCNQ1 potassium channel. New J. Sci. 2014; 2014: Article ID 237431. DOI: 10.1155/2014/237431 17. Modi S., Krahn A.D. Sudden cardiac arrest without overt heart disease. Circulation. 2011; 123 (25): 2994–3008. DOI: 10.1161/CIRCULATIONAHA.110. 981381
  17. Priori S.G., Napolitano C., Schwartz P.J, Grillo M., Bloise R., Ronchetti E. et al. Asso-ciation of long QT syndrome loci and cardiac events among patients treated with бета-blockers. J. Am. Med. Assoc. 2004; 292 (11): 1341–4. DOI: 10.1001/jama.292.11.1341
  18. Andelfinger G., Tapper A.R., Welch R.C., Vanoye C.G., George A.L., Benson D.W. KCNJ2 mutation results in Andersen syndrome with sexspecific cardiac and skeletal muscle phenotypes. Am. J. Hum. Genet. 2002; 71 (3): 663–8. DOI: 10.1086/342360
  19. Makarov L.M., Kiseleva I.I., Dolgikh V. Normative parameters of ECG in children. Pediatrics. 2006; (2): 71–3 (in Russ.). 21. Polyak M.E., Ivanova E.A., Polyakov A.V., Zaklyaz'minskaya E.V. Spectrum of muta-tions in the KCNQ1 gene in Russian patients with long QT syndrome. Russian Journal of Cardiology. 2016; 138 (10): 15–20 (in Russ.). DOI: 10.15829/1560-4071-2016-10-15-20
  20. Giudicessi J.R., Ackerman M.J. Genotype- and phenotype-guided management of con-genital long QT syndrome. Curr. Probl. Cardiol. 2013; 38 (10): 417–55. DOI: 10.1016/j.cpcardiol.2013.08.001
  21. Barsheshet A., Goldenberg I., O-Uchi J., Moss A.J., Jons C., Shimizu W. et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: Im-plications for mutation-specific response to бета-blocker therapy in type 1 long-QT syn-drome. Circulation. 2012; 125 (16): 1988–96. DOI: 10.1161/CIRCULATIONAHA.111.048041
  22. Yagi N., Itoh H., Hisamatsu T., Tomita Y., Kimura H., Fujii Y. et al. A challenge for mu-tation specific risk stratification in long QT syndrome type 1. J. Cardiol. 2018; 72 (1): 56–65. DOI: 10.1016/j.jjcc.2017.12.011
  23. Waddell-Smith K.E., Earle N., Skinner J.R. Must every child with long QT syndrome take a beta blocker? Arch. Dis. Child. 2015; 100 (3): 279–82. DOI: 10.1136/archdischild-2014-3068644
  24. Makarov L.M. ECG in pediatrics. Moscow; 2013 (in Russ.).
  25. Schwartz P.J., Moss A.J., Vincent G.M., Crampton R.S. Diagnostic criteria for the long QT syndrome: An update. Circulation. 1993; 88 (2): 782–4. DOI: 10.1161/01.CIR.88.2.782
  26. Makarov L.M., Komolyatova V.N., Kiseleva I.I., Fedina I.I., Besportochniy D.A. Stan-dard parameters of ECG in children. Methodological recommendations. Moscow; 2018 (in Russ.).
  27. Moss A.J., Schwartz P.J., Crampton R.S., Tzivoni D., Locati E.H., MacCluer J. et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991; 84 (3): 1136–44. DOI: 10.1161/01.CIR.84.3.1136
  28. Wallace E., Howard L., Liu M., O'Brien T., Ward D., Shen S. et al. Long QT syndrome: genetics and future perspective. Pediatr. Cardiol. 2019; 40 (7): 1419–30. DOI: 10.1007/s00246-019- 02151-x
  29. Huang H., Kuenze G., Smith J.A., Taylor K.C., Duran A.M., Hadziselimovic A. et al. Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. Sci. Adv. 2018; 4 (3). DOI: 10.1126/sciadv.aar2631
  30. Lepeschkin E., Surawicz B. The measurement of the Q–T interval of the electrocardio-gram. Circulation. 1952; 6 (3): 378–88. DOI: 10.1161/01.CIR.6.3.378
  31. Vink A.S., Neumann B., Lieve K.V.V., Sinner M.F., Hofman N., El Kadi S. et al. Determination and interpretation of the QT interval: Comprehensive analysis of a large cohort of long QT syndrome patients and controls. Circulation. 2018; 138 (21): 2345–58. DOI: 10.1161/CIRCULATIONAHA.118.033943
  32. Shkol'nikova M.A., Miklashevich I.M., Kalinin L.A. Normative parameters of ECG in children and adolescents. Moscow; 2010 (in Russ.).
  33. Zhang L., Benson D.W., Tristani-Firouzi M., Ptacek L.J., Tawil R., Schwartz P.J. et al. Electrocardiographic features in Andersen–Tawil syndrome patients with KCNJ2 muta-tions: Characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005; 111 (21): 2720–6. DOI: 10.1161/CIRCULATIONAHA.104.472498
  34. Bazett H.C. An analysis of time relations of electrocardiograms. Heart. 1920; 7: 353–67. 37. Makarov L.M., Komolyatova V.N., Kupriyanova O.O., Pervova E.V., Ryabykina G.V. National Russian recommendations for the use of Holter monitoring methods in clinical practice. Russian Journal of Cardiology. 2014; 2 (106): 6–71 (in Russ.).
  35. Piippo K., Swan H., Pasternack M., Chapman H., Paavonen K., Viitasalo M. et al. A founder mutation of the potassium channel KCNQ1 in long QT syndrome: Implications for estimation of disease prevalence and molecular diagnostics. J. Am. Coll.
  36. Shimizu W., Horie M., Ohno S., Takenaka K., Yamaguchi M., Shimizu M. et al. Muta-tion sitespecific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: Multicenter study in Japan. J. Am. Coll. Cardiol. 2004; 44 (1): 117–25. DOI: 10.1016/j.jacc.2004.03.043
  37. Moss A.J., Shimizu W., Wilde A.A.M., Towbin J.A., Zareba W., Robinson J.L. et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 2007; 115 (19): 2481–9. DOI: 10.1161/CIRCULATIONAHA.106.665406
  38. Andersen E.D., Krasilnikoff P.A., Overvad H. Intermittent muscular weakness, extrasys-toles, and multiple developmental anomalies: a new syndrome? Acta Paediatrica. 1971; 60 (5): 559–64. DOI: 10.1111/j.1651-2227.1971.tb06990.x
  39. Tawil R., Ptacek L.J., Pavlakis S.G., DeVivo D.C., Penn A.S., Özdemir C. et al. Ander-sen's syndrome: Potassium sensitive periodic paralysis, ventricular ectopy, and dysmor-phic features. Ann. Neurol. 1994; 35 (3): 326–30. DOI: 10.1002/ana.410350313
  40. Plaster N.M., Tawil R., Tristani-Firouzi M., Canún S., Bendahhou S., Tsunoda A. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of An-dersen's syndrome. Cell. 2001; 105 (4): 511–9. DOI: 10.1016/S0092-8674(01)00342-7
  41. Wollnik B., Schroeder B.C., Kubisch C., Esperer H.D., Wieacker P., Jentsch T.J. Patho-physiological mechanisms of dominant and recessive KvLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum. Mol. Genet. 1997; 6 (11): 1943–9. DOI: 10.1093/hmg/6.11.1943
  42. Ashcroft F.M. Ion channels and disease. Channelopathies. San Diego; Academic Press: 1999.
  43. Li R.A., Miake J., Hoppe U.C., Johns D.C., Marbán E., Bradley Nuss H. Functional consequences of the arrhythmogenic G306R KvLQT1 K+ channel mutant probed by viral gene transfer in cardiomyocytes. J. Physiol. 2001; 533 (Pt 1): 127–33. DOI: 10.1111/j.1469-7793.2001.0127b.x

About Authors

  • Egor L. Kondrykinskiy, Cand. Med. Sci., Pediatric Cardiologist; ORCID
  • Marat M. Zakirov, Head of Department, Pediatric Cardiologist; ORCID
  • Inna V. Kondrat'eva, Cand. Med. Sci., Associate Professor; ORCID
  • Elena N. Kulakova, Cand. Med. Sci., Associate Professor; ORCID
  • Sergey A. Kovalev, Dr. Med. Sci., Professor, Head of Department, Head of the Cardiac Surgery Center; ORCID
  • Elena V. Khomarova, Pediatric Cardiologist; ORCID
  • Mikhail L. Zhidkov, Chief Physician; ORCID
  • Ekaterina E. Lesovaya, Resident Physician; ORCID
  • Vyacheslav V. Lesovoy, Resident Physician; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery