Modern possibilities of treatment of patients with ischemic heart disease and multivessel, diffuse coronary lesions

Authors: Bolivogui J.M., Maksimkin D.A., Faybushevich A.G., Shugushev Z.Kh.

Company: Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2021-15-4-482-495

For citation: Bolivogui J.M., Maksimkin D.A., Faybushevich A.G., Shugushev Z.Kh. Modern possibilities of treatment of patients with ischemic heart disease and multivessel, diffuse coronary lesions. Creative Cardiology. 2021; 15 (4): 482–95 (in Russ.). DOI: 10.24022/1997-3187-2021-15-4-482-495

Received / Accepted:  13.09.2021 / 01.12.2021

Keywords: diffuse atherosclerosis multivessel disease intravascular imaging

Download
Full text:  

 

Abstract

It provides an overview of the problems of treatment of patients with diffuse multivessel coronary disease, carried out on the basis of an analysis of current research and clinical practice guidelines. It has been shown that percutaneous coronary intervention can act as the only alternative method of myocardial revascularization in patients with diffuse atherosclerosis of the coronary arteries who were refused coronary artery bypass grafting surgery due to a severe comorbid background or unfavorable morphology of the lesion, as well as in patients who themselves refuse to perform open surgery. It is noted that the integrated use of intravascular imaging techniques to avoid undue interference, complications during stenting procedures, as well as to determine the necessary amount of revascularization that, in general, contribute to the significant improvement in long-term outcomes of interventions and revising existing views on the endovascular treatment of patients with diffuse atherosclerosis.

References

  1. Xu B., Gao R.L., Zhang R.Y., Wang H.C., Li Z.Q., Yang Y.J. et al. Efficacy and safety of FIREHAWK abluminal groove filled biodegradable polymer sirolimus-eluting stents for the treatment of long coronary lesions: nine-month angiographic and one-year clinical results from TARGET I trial long cohort. Chin. Med. J. (Engl.). 2013; 126 (6): 1026–32.
  2. Ryan T.J., Faxon D.P., Gunnar R.M., Kennedy J.W., King S.B., 3rd, Loop F.D. et al. Guidelines for percutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Percutaneous Transluminal Coronary Angioplasty). Circulation. 1988; 78 (2): 486–502. DOI: 10.1161/01.cir.78.2.486
  3. Bogaty P., Brecker S.J., White S.E., Stevenson R.N., el-Tamimi H., Balcon R., Maseri A. Comparison of coronary angiographic findings in acute and chronic first presentation of ischemic heart disease. Circulation. 1993; 87 (6): 1938–46. DOI: 10.1161/01.cir.87.6.1938
  4. Dourado L.O.C., Bittencourt M.S., Pereira A.C., Poppi N.T., Dallan L.A.O., Krieger J.E. et al. Coronary artery bypass surgery in diffuse advanced coronary artery disease: 1-year clinical and angiographic results. Thorac. Cardiovasc. Surg. 2018; 66 (6): 477–82. DOI: 10.1055/s-0037-1601306
  5. Shiono Y., Kubo T., Honda K., Katayama Y., Aoki H., Satogami K. et al. Impact of functional focal versus diffuse coronary artery disease on bypass graft patency. Int. J. Cardiol. 2016; 222: 16–21. DOI: 10.1016/j.ijcard.2016.07.052
  6. Farooq V., van Klaveren D., Steyerberg E.W., Meliga E., Vergouwe Y., Chieffo A. et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet. 2013; (381) 9867: 639–50. DOI: 10.1016/s0140-6736(13)60108-7
  7. Alekyan B.G. (Ed.) X-ray endovascular surgery. National guide. Vol. 2. Moscow; 2017: 683–93.
  8. Akchurin R.S., Shiryaev A.A., Vasil’ev V.P., Galyautdinov D.M., Vlasova E.E. Current trends in coronary surgery. Circulation Pathology and Cardiac Surgery (Patologiya Krovoobrashcheniya i Kardiokhirurgiya). 2017; 21 (3s): 34–44 (in Russ.). DOI: 10.21688/1681-3472-2017-3S-34-44
  9. Dourado L.O.C., Pereira A.C., Poppi N.T., Cavalcante R., Gaiotto F., Dallan L.A.O. et al. The role of the heart team in patients with diffuse coronary artery disease undergoing coronary artery bypass grafting. Thorac. Cardiovasc. Surg. 2020. DOI: 10.1055/s-0040-1718936
  10. Lozano I., Capin E., de la Hera E.-M., Llosa J.C., Carro A., López-Palop R. Diffuse coronary artery disease not amenable to revascularization: longterm prognosis. Rev. Esp. Cardiol. (Engl. Ed.). 2015; 68: 629–40. DOI: 10.1016/j.rec.2015.02.013
  11. Zhu Y., Meng S., Chen M., Liu K., Jia R., Li H. et al. Long-term prognosis of chronic total occlusion treated by successful percutaneous coronary intervention in patients with or without diabetes mellitus: a systematic review and metaanalysis. Cardiovasc. Diabetol. 2021; 20 (1): 29. DOI: 10.1186/s12933-021-01223-8
  12. Neumann F.-J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019; 40: 87–165. DOI: 10.1093/eurheartj/ehy394
  13. Ganyukov V.I., Tarasov R.S., Shilov A.A., Kochergin N.A., Barbarash L.S. Mini-invasive hybrid myocardial revascularization in multivessel coronary artery disease. The current state of the issue. Complex Issues of Cardiovascular Diseases. 2016; 2: 46–50 (in Russ.). DOI: 10.17802/2306-1278-2016-2-46-50
  14. Belash S.A., Shevchenko S.S., Yasakova E.P., Barbukhatti K.O., Porkhanov V.A. Long-term results of reconstructive surgery without endarterectomy with diffuse coronary atherosclerosis. Innovative Medicine of Kuban. 2020; 4: 6–13 (in Russ.). DOI: 10.35401/2500-0268-2020-20-4-6-13
  15. Stavrou A., Gkiousias V., Kyprianou K., Dimitrakaki I.A., Challoumas D., Dimitrakakis G. Coronary endarterectomy: the current state of knowledge. Atherosclerosis. 2016; 249: 88–98. DOI: 10.1016/j.atherosclerosis.2016.03.036
  16. Kikuchi K., Une D., Endo Y., Matsuyama T., Fukada Y., Kurata A. Minimally invasive coronary artery bypass grating using bilateral in situ internal thoracic arteries. Ann. Thorac. Surg. 2015; 100 (3): 1082–4. DOI: 10.1016/j.athoracsur.2014.11.056
  17. Etienne P.Y., D'hoore W., Papadatos S., Mairy Y., El Khoury G., Noirhomme P., Hanet C., Glineur D. Five-year follow-up of drug-eluting stents implantation vs. minimally invasive direct coronary artery bypass for left anterior descending artery disease: a propensity score analysis. Eur. J. Cardiothorac. Surg. 2013; 44 (5): 884–90. DOI: 10.1093/ejcts/ezt137
  18. Khubulava G.G., Kravchuk V.N., Knyazev E.A., Shishkevich A.N., Kusay A.S., Porembskaya I.A. et al. Mini-traumatic myocardial revascularization. Russian Journal of Thoracic and Cardiovascular Surgery. 2016; 58 (4): 207–13 (in Russ.).
  19. Modrau I.S., Holm N.R., Mæng M., Bøtker H.E., Christiansen E.H., Kristensen S.D. et al. Hybrid coronary revascularization study group. One-year clinical and angiographic results of hybrid coronary revascularization. J. Thorac. Cardiovasc. Surg. 2015; 150 (5): 1181–6. DOI: 10.1016/j.jtcvs.2015.08.072
  20. Barbarash O.L., Semenov V.Yu., Samorodskaya I.V., Evseeva M.V., Rozhkov N.A., Sumin A.N., Barbarash L.S. Comorbid pathology of coronary heart disease patients with coronary artery bypass grafting: the experience of two cardiac centers. Russian Journal of Cardiology. 2017; 3 (143): 6–13 (in Russ.). DOI: 10.15829/1560-4071-2017-3-6-13
  21. Abugov S.A., Zhbanov I.V., Mardanyan G.V., Pureckij M.V., Polyakov R.S., Saakyan Yu.M. et al. The results of percutaneous coronary intervention and coronary artery bypass surgery in patients with multivessel disease involving the left main coronary artery. Russian Journal of Cardiology and Cardiovascular Surgery /Kardiologiya i SerdechnoSosudistaya Khirurgiya. 2020; 13 (6): 474–80 (in Russ.). DOI: 10.17116/kardio202013061474
  22. Ramasubrahmanyam G., Panchanatheeswaran K., Varma Kalangi T.K., Nagasaina Rao G. Surgical management of diffusely diseased coronary arteries. Indian J. Thorac. Cardiovasc. Surg. 2019; 35 (3): 453–60. DOI: 10.1007/s12055-018-0776-2
  23. Xaplanteris P., Fournier S., Pijls N.H.J., Fearon W.F., Barbato E., Tonino P.A.L. et al. FAME 2 Investigators. Five-year outcomes with PCI guided by fractional flow reserve. N. Engl. J. Med. 2018; 379: 250–9. DOI: 10.1056/NEJMoa1803538
  24. Mohr F.W., Morice M.C., Kappetein A.P., Feldman T.E., Stahlae E., Colombo A. et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomized, clinical SYNTAX trial. Lancet. 2013; 381: 629–38. DOI: 10.1016/S0140- 6736(13)60141-5
  25. Thuijs D.J.F.M., Kappetein A.P., Serruys P.W., Mohr F.-W., Morice M.-C., Mack M.J. et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with threevessel or left main coronary artery disease: 10-year follow-up of the multicentre randomized controlled SYNTAX trial. Lancet. 2019; 394: 1325–34. DOI: 10.1016/S0140-6736(19)31997-X
  26. Park S.J., Ahn J.M., Kim Y.H., Park D.W., Yun S.-C., Lee J.-Y. et al. Trial of everolimus-eluting stents or bypass surgery for coronary disease. N. Engl. J. Med. 2015; 372: 1204–12. DOI: 10.1056/NEJMoa1415447
  27. Caixeta A., Campos C.M., Felix C., Chieffo A., Capranzano P., Kawamoto H. et al. Predictors of long-term adverse events after absorb bioresorbable vascular scaffold implantation: a 1,933-patient pooled analysis from international registries. EuroIntervention. 2019; 15 (7): 623–30. DOI: 10.4244/EIJ-D-16-00796
  28. Stone G.W., Sabik J.F., Serruys P.W., Simonton S.A., Genereux P., Puskas J. et al. Everolimuseluting stents or bypass surgery for left main coronary artery disease. N. Engl. J. Med. 2017; 376 (11): 1087–9. DOI: 10.1056/NEJMoa1610227
  29. Alekyan B.G., Karapetyan N.G., Kishmiryan D.O., Revishvili A.Sh. The effectiveness of the use of risk scales SYNTAX Score II when selecting revascularization strategy in patients with three-vessel disease of the coronary arteries and the left main coronary artery. Russian Journal of Endovascular Surgery (Endovaskulyarnaya Khirurgiya). 2020; 7 (4): 334–44 (in Russ.). DOI: 10.24183/2409-4080-2020-7-4-334-344
  30. Windecker S., Stortecky S., Stefanini G.G., da Costa B.R., Rutjes A.W., Di Nisio M. et al. Revascularization versus medical treatment in patients with stable coronary artery disease: network meta-analysis. BMJ. 2014; 348: g3859. DOI: 10.1136/bmj.g3859
  31. Escaned J., Collet C., Ryan N., De Maria G.L., Walsh S.J., Sabate M. et al. Clinical outcomes of state-of-the-art percutaneous coronary revascularization in patients with de novo three vessel disease: 1-year results of the SYNTAX II study. Eur. Heart J. 2017; 38 (42): 3124–34. DOI: 10.1093/eurheartj/ehx512
  32. Pillai A.A., Gousy S., Kottyath H., Satheesh S., Selvaraj R., Jayaraman B. Long-term outcomes following left main bifurcation stenting in Indian population – analysis based on SYNTAX I and II scores. Indian Heart J. 2018; 70 (3): 394–8. DOI: 10.1016/j.ihj.2017.08.014
  33. Roy P., Okabe T., Pinto Slottow T.L., Steinberg D.H., Smith K., Torguson R. et al. Correlates of clinical restenosis following intracoronary implantation of drug-eluting stents. Am. J. Cardiol. 2007; 100: 965–9. DOI: 10.1016/j.amjcard.2007.04.036
  34. Yeh R.W., Silber S., Chen L., Chen S., Hiremath S., Neumann F-J. et al. 5-Year safety and efficacy of resolute zotarolimus-eluting stent: the RESOLUTE global clinical trial program. JACC Cardiovasc. Interv. 2017; 10 (3): 247–54. DOI: 10.1016/j.jcin.2016.11.004
  35. Kaul U., Bangalore S., Seth A., Arambam P., Abhaichand R.K., Patel T.M. et al. Paclitaxel-eluting versus everolimus-eluting coronary stents in diabetes. N. Engl. J. Med. 2015; 373 (18): 1709–19. DOI: 10.1056/NEJMoa1510188
  36. Jain R.K., Chakravarthi P., Shetty R., Ramchandra P., Polavarapu R.S., Wander G.S. et al. One-year outcomes of a biomime sirolimus-eluting coronary stent system with a biodegradable polymer in all-comers coronary artery disease patients: the meriT-3 study. Indian Heart J. 2016; 68 (5): 599–603. DOI: 10.1016/j.ihj.2016.09.007
  37. Babunashvili A.M., Kartashov D.S., Babokin V.E., Ozashvili I.G., Yudin I.E. Efficacy of sirolimuseluting stents for the treatment of diffuse (long and very long) atherosclerotic lesions of the coronary arteries. Russian Journal of Cardiology. 2017; 8 (148): 42–50 (in Russ.). DOI: 10.15829/1560- 4071-2017-8-42-50
  38. Garcia S., Sandoval Y., Roukoz H., Adabag S., Canoniero M., Yannopoulos D. et al. Outcomes after complete versus incomplete revascularization of patients with multivessel coronary artery disease: a meta-analysis of 89,883 patients enrolled in randomized clinical trials and observational studies. J. Am. Coll. Cardiol. 2013; 62 (16): 1421–31. DOI: 10.1016/j.jacc.2013.05.033
  39. Papafaklis M.I., Muramatsu T., Ishibashi Y., Bourantas C.V., Fotiadis D.I., Brilakis E.S. et al. Virtual resting Pd/Pa from coronary angiography and blood flow modelling: diagnostic performance against fractional flow reserve. Heart Lung Circ. 2018; 27 (3): 377–80. DOI: 10.1016/j.hlc.2017.03.163
  40. Kim H.L., Koo B.K., Nam C.W., Doh J.H., Kim J.H., Yang H.M. et al. Clinical and physiological outcomes of fractional flow reserve-guided percutaneous coronary intervention in patients with serial stenoses within one coronary artery. JACC. Cardiovasc. Interv. 2012; 5 (10): 1013–8. DOI: 10.1016/j.jcin.2012.06.017
  41. Berry C., McClure J.D., Oldroyd K.G. Meta-analysis of death and myocardial infarction in the DEFINE-FLAIR and iFR-SWEDEHEART Trials. Circulation. 2017; 136 (24): 2389–91. DOI: 10.1161/CIRCULATIONAHA.117.030430
  42. Andell P., Berntorp K., Christiansen E.H., Gudmundsdottir I.J., Sandhall L., Venetsanos D. et al. Reclassification of treatment strategy with instantaneous wave-free ratio and fractional flow reserve: a substudy from the iFR-SWEDEHEART Trial. JACC Cardiovasc. Interv. 2018; 11 (20): 2084–94. DOI: 10.1016/j.jcin.2018.07.035
  43. Modi B., Perera D. How to select patients requi-ring coronary revascularization using coronary physiology. JRSM Cardiovasc. Dis. 2021; 10: 2048004020979476. DOI: 10.1177/20480040-2097 9476
  44. Indolfi C., De Rosa S., Mongiardo A., Yasuda M., Torela D., Spaccarotella C. The everlasting dispute between coronary bypass and angioplasty in patients with multivessels coronary artery disease: results of the SYNTAX II study. Eur. Heart. J. Suppl. 2019; 21 (Suppl. B): 55–6. DOI: 10.1093/eurheartj/suz019
  45. Sawant A.C., Bhardwaj A., Banerjee K., Jobanputra Y., Kumar A., Parikh P. et al. Fractional flow reserve guided percutaneous coronary intervention results in reduced ischemic myocardium and improved outcomes. Catheter Cardiovasc. Interv. 2018; 92 (4): 692–700. DOI: 10.1002/ccd.27525
  46. Won J., Hong Y.J., Hyun D.Y., Jeong H.K., Oh S.S., Kim H.Y. et al. Predictors of clinical outcome in patients with angiographically intermediate lesions with minimum lumen area less than 4 mm2 using intravascular ultrasound in non-proximal epicardial coronary artery. Chonnam. Med. J. 2018; 54 (3): 190–6. DOI: 10.4068/cmj.2018.54.3.190
  47. Prati F., Di Vito L., Biondi-Zoccai G., Occhipinti M., La Manna A., Tamburino C. et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the centro per la lotta contro l’infartooptimisation of percutaneous coronary intervention (CLI-OPCI) study. EuroIntervention. 2012; 8 (7): 823–9. DOI: 10.4244/EIJV8I7A125
  48. Buccheri S., Franchina G., Romano S., Puglisi S., Venuti G., D'Arrigo P. et al. Clinical outcomes following intravascular imaging-guided versus coronary angiography-guided percutaneous coronary intervention with stent implantation: a systematic review and bayesian network meta-analysis of 31 studies and 17,882 patients. JACC Cardiovasc. Interv. 2017; 10 (24): 2488–98. DOI: 10.1016/j.jcin.2017.08.051
  49. Jiang Y., He L.P., Gong R., Lei G.T., Wu Y.Q. Comparison of clinical outcomes between intravascular optical coherence tomography-guided and angiography-guided stent implantation: a metaanalysis of randomized control trials and systematic review. Medicine (Baltimore). 2019; 98 (6): e14300. DOI: 10.1097/MD.0000000000014300
  50. Sozykin A.V., Nikitin A.E., Shlykov A.V., Novikova N.A., Kuz'mina I.V., Ertman V.G., Naumov Ya.A., Shevchenko O.P. The left main coronary artery diseases in patients with stable coronary artery disease: possibilities of optical coherence tomography in the choice of medical tactics and optimize interventional treatment. Russian Journal of Endovascular Surgery. 2018; 5 (4): 402–9 (in Russ.). DOI: 10.24183/2409-4080-2018-5-4-402-409

About Authors

  • Jacques M. Bolivogui, Postgraduate; ORCID
  • Daniil A. Maksimkin, Cand. Med. Sci., Associate Professor; ORCID
  • Aleksandr G. Faybushevich, Cand. Med. Sci., Associate Professor, Chief of Chair; ORCID
  • Zaurbek Kh. Shugushev, Dr. Med. Sci., Associate Professor, Chief of Chair; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery