Global deformation of left ventricle: chemotherapy-induced cardiotoxicity
Authors:
Company:
1 Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
2 National Medical Research Center of Oncology named after N.N. Blokhin, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Akildzhonov F.R., Buziashvili Yu.I., Asymbekova E.U., Artamonova E.V., Tugeeva E.F. Global deformation of left ventricle: chemotherapy-induced cardiotoxicity. Creative Cardiology. 2022; 16 (1): 15–25 (in Russ.). DOI: 10.24022/1997-3187-2022-16-1-15-25
Received / Accepted: 20.10.2021 / 28.03.2022
Keywords: cardiotoxicity global longitudinal strain of left ventricle trastuzumab
Abstract
The achievements of targeted therapy of oncological diseases over the past decades has significantly increased the survival rate of patients who verified malignant neoplasm. It is known that some chemotherapeutic agents (for example, anthracycles, trastuzumab), commonly used in the treatment of malignant neoplasms, have a cardiotoxic effect. One of the most unfavorable side effects is the development of early left ventricular dysfunction (LV) and the progression of heart failure. Global longitudinal strain (GLS) of the left ventricle reveals early subclinical dysfunction of myocardial LV and can be used in patients receiving chemotherapy. The prognostic value of the GLS assessment to identify cardiotoxicity associated with chemotherapy is poorly studied. Progress in the treatment of cancer over the past decades has improved long-term survival of patients, but increased the frequency of cardiotoxicity. In this review, we summarize the existing literature on the global deformation of the myocardium of the left ventricle in the longitudinal direction (GLS) and represent the current aspects of the pathogenesis of cardiotoxicity in patients receiving chemotherapyReferences
- Moslehi J., Amgalan D., Kitsis R. Grounding cardio-oncology in basic and clinical science. Circulation. 2017; 136 (1): 3–5. DOI: 10.1161/CIRCULATIONAHA.117.025393
- Ferrell B., Temel J., Temin S. Integration of palliative care into standard oncology care: american society of clinical oncology clinical practice guideline update. J. Clin Oncol. 2017; 35 (1): 96–112. DOI: 10.1200/JCO.2016.70.1474
- Volkova M., Russell R., 3rd. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 2011; 7 (4): 214–20. DOI: 10.2174/157340311799960645
- Curigliano G., Cardinale D., Dent S. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer. J. Clin. 2016; 66 (4): 309–25. DOI: 10.3322/caac.21341
- Meléndez G.C., Sukpraphrute B., D’Agostino R.B. Frequency of left ventricular end-diastolic volumemediated declines in ejection fraction in patients receiving potentially cardiotoxic cancer treatment. Am. J. Cardiol. 2017; 119 (10): 1637–42. DOI: 10.1016/j.amjcard.2017.02.008
- Plokhova E.V., Doundoua D.P. Cardiooncology. Basic principles of prevention and treatment of cardiotoxicity in cancer patients. Journal of Clinical Practice. 2019; 10 (1): 31–41 (in Russ.).
- Tan T.C., Scherrer-Crosbie M. Cardiac complications of chemotherapy: role of imaging. Curr. Treat. Options Cardiovasc. Med. 2014; 16 (4): 296. DOI: 10.1007/s11936-014-0296-3
- Berber R., Abdel-Gadir A., Rosmini S. Assessing for cardiotoxicity from metal-on-metal hip implants with advanced multimodality imaging techniques. J. Bone Joint Surg Am. 2017; 99 (21): 1827–35. DOI: 10.2106/JBJS.16.00743
- ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines. Russian Journal of Cardiology. 2017; 3: 105–39 (in Russ.). DOI: 10.15829/1560-4071-2017-3- 105-139
- Nair N., Gongora E. Heart failure in chemotherapy-related cardiomyopathy: can exercise make a difference? BBA Clin. 2016; 6: 69–75. DOI: 10.1016/j.bbacli.2016.06.001 11. Shehata M.I., Elhassan A., Munoz A.D., Okereke B., Cornett E. Intraoperative hypotension increased risk in the oncological patient. Anesth. Pain. Med. 2021; 11 (1): e112830. DOI: 10.5812/aapm.112830
- Murabito A., Hirsch E., Ghigo A. Mechanisms of anthracycline-induced cardiotoxicity: is mitochondrial dysfunction the answer? Front. Cardiovasc. Med. 2020; 7: 35. DOI: 10.3389/fcvm.2020.00035
- Corremans R., Ada~o R., De Keulenaer G., LeiteMoreira A., Brás-Silva C. Update on pathophy- siology and preventive strategies of anthracyclineinduced cardiotoxicity. Clin. Exp. Pharmacol. Physiol. 2019; 46 (3): 204–15. DOI: 10.1111/1440- 1681.13036
- Salazar-Mendiguchía J., González-Costello J., Roca J., Ariza-Solé A., Manito N., Cequier A. Anthracycline-mediated cardiomyopathy: basic molecular knowledge for the cardiologist. Arch. Cardiol. Mex. 2014; 84 (3): 218–23. DOI: 10.1016/j.acmx.2013.08.006
- Catanzaro M., Weiner A., Kaminaris A. Doxorubicin-induced cardiomyocyte death is mediated by unchecked mitochondrial fission and mitophagy. FASEB J. 2019; 33 (10): 11096–108. DOI: 10.1096/fj.201802663R
- Zhu H., Sarkar S., Scott L. Doxorubicin redox biology: redox cycling, topoisomerase inhibition, and oxidative stress. react oxyg species (apex). 2016; 1 (3): 189–98. DOI: 10.20455/ros.2016.835
- Schimmel K., Richel D., van den Brink R., Guchelaar H. Complications of treatment: cardiotoxicity of cytotoxic drugs. Cancer Treat. Rev. 2004; 30: 181–91. DOI: 10.1016/j.ctrv.2003.07.003
- Li M., Russo M., Pirozzi F., Tocchetti C., Ghigo A. Autophagy and cancer therapy cardiotoxicity: from molecular mechanisms to therapeutic opportunities. Biochim. Biophys. Acta. Mol. Cell. Res. 2020; 1867 (3): 118493. DOI: 10.1016/j.bbamcr.2019.06.007
- Mohammed T., Singh M., Tiu J., Kim A. Etiology and management of hypertension in patients with cancer. Cardiooncology. 2021; 7 (1): 14. DOI: 10.1186/s40959-021-00101-2
- Čelutkienė J., Pudil R., López-Fernández T. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2020; 22 (9): 1504–24. DOI: 10.1002/ejhf.1957
- Plana J., Galderisi M., Barac A. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2014; 27 (9): 911–39. DOI: 10.1016/j.echo.2014.07.012
- Eschenhagen T., Force T., Ewer M. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2011; 13 (1): 1–10. DOI: 10.1093/eurjhf/hfq213
- Nicol M., Baudet M., Cohen-Solal A. Subclinical left ventricular dysfunction during chemotherapy. Card. Fail. Rev. 2019; 5 (1): 31–6. DOI: 10.15420/cfr.2018.25.1
- Wang C., Chu P. Echocardiography for evaluation of oncology therapy-related cardiotoxicity. Acta Cardiol. Sin. 2016; 32 (5): 560–4. DOI: 10.6515/acs20151024a
- Kang Y., Assuncao B., Denduluri S. Symptomatic heart failure in acute leukemia patients treated with anthracyclines. JACC CardioOncol. 2019; 1 (2): 208–17. DOI: 10.1016/j.jaccao.2019.10.008
- Avalyan A.A., Saidova M.A., Oshchepkova E.V., Chazova I.E. Speckle-tracking echocardiography in 3D mode in assessing the deformation of the myocardium and identifying subclinical cardiotoxicity during chemotherapy in breast cancer patients with arterial hypertension. Systemic Hypertension. 2020; 17 (3): 42–7 (in Russ.). DOI: 10.26442/2075082X.2020.3.200334
- Oikonomou E., Kokkinidis D., Kampaktsis P. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol. 2019; 4 (10): 1007–18. DOI: 10.1001/jamacardio.2019.2952
- Negishi T., Thavendiranathan P., Negishi K., Marwick T. SUCCOUR investigators. Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOUR Trial. JACC Cardiovasc. Imaging. 2018; 11 (8): 1098–105. DOI: 10.1016/j.jcmg. 2018.03.019
- Mahabadi A., Rischpler C. Cardiovascular imaging in cardio-oncology. J. Thorac Dis. 2018; 10 (Suppl. 35): S4351–66. DOI: 10.21037/jtd.2018.10.92
- Bhakta N., Liu Q., Ness K. The cumulative burden of surviving childhood cancer: an initial report from the St. Jude Lifetime Cohort Study (SJLIFE). Lancet. 2017; 390 (10112): 2569–82. DOI: 10.1016/S0140-6736(17)31610-0
- Araujo-Gutierrez R., Chitturi K., Xu J. Baseline global longitudinal strain predictive of anthracycline-induced cardiotoxicity. Cardiooncology. 2021; 7 (1): 4. DOI: 10.1186/s40959-021-00090-2
- Ali M., Yucel E., Bouras S. Myocardial strain is associated with adverse clinical cardiac events in patients treated with anthracyclines. J. Am. Soc. Echocardiogr. 2016; 29 (6): 522–7.e3. DOI: 10.1016/j.echo.2016.02.018
- Gabriele C.M. From molecular mechanisms to clinical management of antineoplastic druginduced cardiovascular toxicity: a translational overview. Antioxidants & redox signaling 2019; 30 (18): 2110–53. DOI: 10.1089/ars.2016.6930
- Negishi K., Negishi T., Hare J. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J. Am. Soc. Echocardiogr. 2013; 26: 493–8. DOI: 10.1016/j.echo.2013.02.008
- Mousavi N., Tan T., Ali M., Halpern E., Wang L., Scherrer-Crosbie M. Echocardiographic parameters of left ventricular size and function as predictors of symptomatic heart failure in patients with a left ventricular ejection fraction of 50–59% treated with anthracyclines. Eur. Heart. J. Cardiovasc. Imaging. 2015; 16 (9): 977–84. DOI: 10.1093/ehjci/jev113
- Hatazawa K., Tanaka H., Nonaka A. Baseline global longitudinal strain as a predictor of left ventricular dysfunction and hospitalization for heart failure of patients with malignant lymphoma after anthracycline therapy. Circ. J. 2018; 82 (10): 2566–74. DOI: 10.1253/circj.CJ-18-0333
- Zamorano J., Lancellotti P., Rodriguez Mun~oz D. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016; 37 (36): 2768–801. DOI: 10.1093/eurheartj/ehw211
- Sulaiman L., Hesham D., Abdel Hamid M., Youssef G. The combined role of NT-proBNP and LV-GLS in the detection of early subtle chemotherapy-induced cardiotoxicity in breast cancer female patients. Egypt Heart J. 2021; 73 (1): 20. DOI: 10.1186/s43044-021-00142-z
- Calle M.A., Sandhu N., Xia H. Two-dimensional speckle tracking echocardiography predicts early subclinical cardiotoxicity associated with anthracycline-trastuzumab chemotherapy in patients with breast cancer. BMC Cancer. 2018; 18 (1): 1037. DOI: 10.1186/s12885-018-4935-z
- Yancy C., Jessup M., Bozkurt B. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013; 62 (16): e147–239. DOI: 10.1016/j.jacc. 2013.05.019
- Armenian S., Lacchetti C., Barac A. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: american society of clinical oncology clinical practice guideline. J. Clin. Oncol. 2017; 35 (8): 893–911. DOI: 10.1200/JCO.2016.70.5400
About Authors
- Firdavsdzhon R. Akildzhonov, Postgraduate; ORCID
- Yuriy I. Buziashvili, Dr. Med. Sci., Professor, Academician of RAS, Head of Department, ORCID
- El’mira U. Asymbekova, Dr. Med. Sci., Leading Researcher; ORCID
- Elena V. Artamonova, Dr. Med. Sci., Leading Researcher; ORCID
- E’lvina F. Tugeeva, Dr. Med. Sci., Senior Researcher, ORCID