Role of submaximal parameters of cardiopulmonary exercise test for the assessment of functional capacity in adult patients with congenital heart defects

Authors: Kakuchaya T.T., Dzhitava T.G., Kovalev D.V., Zakaraya N.E.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2022-16-1-38-48

For citation: Kakuchaya T.T., Dzhitava T.G., Kovalev D.V., Zakaraya N.E. Role of submaximal parameters of cardiopulmonary exercise test for the assessment of functional capacity in adult patients with congenital heart defects. Creative Cardiology. 2022; 16 (1): 38–48 (in Russ.). DOI: 10.24022/1997-3187-2022-16-1-38-48

Received / Accepted:  05.11.2021 / 21.03.2022

Keywords: cardiopulmonary exercise testing congenital heart defects maximal oxygen consumption submaximal parameters of cardiopulmonary exercise testing

Download
Full text:  

 

Abstract

Majority of studies evaluating functional capacity of adults with congenital heart defects show reduced physical tolerability due to the cardiac defect per se. As well as congenital heart defects vary the results of cardiopulmonary testing (CPT) can also be different. Not only CPT is useful for the preoperative prognosis of adverse events but also it is helpful in the long-term prognosis and supervision of physical trainings and their efficiency. Hereby we describe some of the most significant CPT parameters valid for clinical practice and prognosis. Following pointers are highlighted – optimal cardiorespiratory point, ventilatory anaerobic threshold, indicator of oxygen consumption efficiency etc. Some of these parameters independently or in combination show the best agreement with maximal oxygen consumption and may be useful for the determination of cardiorespiratory functional capacity in this group of patients.

References

  1. Ramos P.S., Rabelo D., Claudio R., de Araújo G.S. Cardiorespiratory optimal point: a submaximal variable of the cardiopulmonary exercise testing. Arq. Bras. Cardiol. 2012; 99 (5). DOI: 10.1590/S0066-782X2012005000091
  2. Ватутин Н.Т., Смирнова А.С., Гасендич Е.С., Тов И.В. Современный взгляд на кардиопульмональное нагрузочное тестирование (обзор рекомендаций EACPR/AHA, 2016). Архивъ внутренней медицины. 2017; 1: 5–14. DOI: 10.20514/2226-6704-2017-7-1-5-14
  3. Kempny A., Dimopoulos K., Uebing A., Moceri P., Swan L., Gatzoulis M. A., Diller G.-P. Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life–single centre experience and review of published data. Eur. Heart J. 2012; 33: 1386–96. DOI: 10.1093/eurheartj/ehr461
  4. Piepoli M.F., Hoes A.W., Agewall S., Albus Ch., Brotons C., Catapano A.L. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016; 37 (29): 2315–81. DOI: 10.1093/eurheartj/ehw106
  5. Marco G., Adams V., Conraads V., Halle M., Mezzani A., Vanhees L. et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012; 126 (18): 2261–74. DOI: 10.1161/CIR.0b013e31826fb946
  6. Warnes C.A., Williams R.G., Bashore T.M., Child J.S., Connolly H.M., Dearani J.A. et al. ACC/AHA 2008 Guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation. 2008; 118: e714–833.
  7. Davies L.C., Wensel R., Georgiadou P., Cicoira M., Coats A.J.S., Piepoli M.F., Francis D.P. Enhanced prognostic value from cardiopulmonary exercise testing in chronic heart failure by non-linear analysis: oxygen uptake efficiency slope. Eur. Heart J. 2006; 27: 684–90. DOI: 10.1093/eurheartj/ehi672
  8. Ramos P.S., Araújo C.G.S. Cardiorespiratory optimal point during exercise testing as a predictor of all-cause mortality. Rev. Port. Cardiol. 2017; 36 (4): 261–9. DOI: 10.1016/j.repc.2016.09.017
  9. Neidenbach R., Niwa K., Oto O., Oechslin E., Aboulhosn J., Celermajer D. et al. Improving medical care and prevention in adults with congenital heart disease–reflections on a global problem– part I: development of congenital cardiology, epidemiology, clinical aspects, heart failure, cardiac arrhythmia. Cardiovasc. Diagn. Ther. 2018; 8 (6): 705–15. DOI: 10.21037/cdt.2018.10.15
  10. Morten F.P., Veldtman G., Hechter S., Therrien J., Chen A., Warsi M.A. et al. Aerobic capacity in adults with various congenital heart diseases. Am. J. Cardiol. 2001; 87: 310–4. DOI: 10.1016/s0002- 9149(00)01364-3
  11. Hauser M., Meierhofer Ch., Schwaiger M., Vogt M., Kaemmerer H., Kuehn A. Myocardial Blood flow in patients with transposition of the great arteries – risk factor for dysfunction of the morphologic systemic right ventricle late after atrial repair. Circ. J. 2015; 79: 425–31. DOI: 10.1253/circj.CJ-14-0716
  12. Buys R., Cornelissen V., Van De Bruaene A., Stevens A., Coeckelberghs E., Onkelinx S. et al. Measures of exercise capacity in adults with congenital heart disease. Int. J. Cardiol. 2011; 153: 26–30. DOI: 10.1016/j.ijcard.2010.08.030
  13. Mano T.B., Gonc, alves A.V., Agapito A.F., Rosa S.A., Rio P., Monteiro A. et al. Cardiopulmonary exercise testing in adults with congenital heart disease: prognostic role in cyanotic patients. Int. J. Cardiol. Congenital. Heart Disease. 2021; 3: 100095. DOI: 10.1016/j.ijcchd.2021.100095
  14. Ohuchi H., Arakaki Y., Hiraumi Y., Tasato H., Kamiya T. Cardiorespiratory response during exercise in patients with cyanotic congenital heart disease with and without a Fontan operation and in patients with congestive heart failure. Int. J. Cardiol. 1998; 66: 241–51. DOI: 10.1016/s0167- 5273(98)00249-6
  15. Shimizu M., Myers J., Buchanan N., Walsh D., Kraemer M., McAuley P., Froelicher V.F. The ventilatory threshold: method, protocol and evaluator agreement. Am. Heart J. 1991; 122 (2): 509–16. DOI: 10.1016/0002-8703(91)91009-c
  16. Reybrouck T., Mertens L., Brusselle S., Weymans M., Eyskens B., Defoor J., Gewillig M. Oxygen uptake versus exercise intensity: a new concept in assessing cardiovascular exercise function in patients with congenital heart disease. Heart. 2000; 84 (1): 46–52. DOI: 10.1136/heart.84.1.46
  17. Akkerman M., van Brussel M., Hulzebos E., Vanhees L., Helders P.J.M., Takken T. The oxygen uptake efficiency slope: what do we know? J. Cardiopulm. Rehabil. Prevent. 2010; 30: 357–73. DOI: 10.1097/HCR.0b013e3181ebf316
  18. Akkerman M., van Brussel M., Hulzebos E., Vanhees L., Helders P.J.M., Takken T. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J. Am. Coll. Cardiol. 1996; 28 (6): 1567–72. DOI: 10.1097/HCR.0b013e3181ebf316
  19. Hollenberg M., Tager I.B. Oxygen uptake efficiency slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. J. Am. Coll. Cardiol. 2000; 36: 194–201. DOI: 10.1016/s0735-1097(00)00691-4
  20. Van Laethem C., Van De Veire N., Backer B., Bihija S., Seghers T., Cambier D. Response of the oxygen uptake efficiency slope to exercise training in patients with chronic heart failure. Eur. J. Heart Fail. 2007; 9: 625–9. DOI: 10.1016/j.ejheart.2007.01.007
  21. Pogliaghi S., Dussin E., Tarperi C., Cevese A., Schena F. Calculation of oxygen uptake efficiency slope based on heart rate reserve end-points in healthy elderly subjects. Eur. J. Appl. Physiol. 2007; 101: 691–6. DOI: 10.1007/s00421-007- 0545-1
  22. Arena R., Myers J., Hsu L., Peberdy M.A., Pinkstaff S., Bensimhon D. et al. The minute ventilation/carbon dioxide production slope is prognostically superior to the oxygen uptake efficiency slope. J. Card. Fail. 2007; 13: 462–9. DOI: 10.1016/j.cardfail.2007.03.004
  23. Pichon A., Jonville S., Denjean A. Evaluation of the inter changeability of VO2max and oxygen uptake efficiency slope. Can. J. Appl. Physiol. 2002; 27: 589–601. DOI: 10.1139/h02-034
  24. Poggio R., Arazi H.C., Giorgi M., Miriuka S.G. Prediction of severe cardiovascular events by VE/VCO2 slope versus peak VO2 in systolic heart failure: a meta-analysis of the published literature. Am. Heart J. 2010; 160: 1004–14. DOI: 10.1016/j.ahj.2010.08.037
  25. Ten Harkel A.D.J., Takken T. Exercise testing and prescription in patients with congenital heart disease. Int. J. Pediatr. 2010; 2010: 791980. DOI: 10.1155/2010/791980

About Authors

  • Tea T. Kakuchaya, Dr. Med. Sci., Professor, Head of Department; ORCID
  • Tamara G. Dzhitava, Cand. Med. Sci., Deputy Head of Department; ORCID
  • Dmitriy V. Kovalev, Dr. Med. Sci., Leading Researcher; ORCID
  • Nino E. Zakaraya, Cardiologist, ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery