Evaluation of the severity of atherosclerotic degeneration of the aortic arch wall using computed tomographic angiography to predict the risk of stroke in patients with carotid stenosis in the early postoperative period

Authors: Pak N.T., Kobelev E., Usov V.Yu., Bobrikova E.E., Chernyavskiy A.M., Bergen T.A.

Company: 1 Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
2 Tomsk National Research Medical Center, Tomsk, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2022-16-1-77-91

For citation: Pak N.T., Kobelev E., Usov V.Yu., Bobrikova E.E., Chernyavskiy A.M., Bergen T.A. Evaluation of the severity of atherosclerotic degeneration of the aortic arch wall using computed tomographic angiography to predict the risk of stroke in patients with carotid stenosis in the early postoperative period. Creative Cardiology. 2022; 16 (1): 77–91 (in Russ.). DOI: 10.24022/1997-3187-2022-16-1-77-91

Received / Accepted:  12.12.2021 / 25.03.2022

Keywords: atherosclerosis computed tomography predictors carotid stenosis embolism

Download
Full text:  

 

Abstract

Background. The lack of standards when choosing the method of surgical treatment of carotid artery stenosis and objective methods for evaluating predictors of embolic complications determine the need to search for diagnostic algorithms to optimize treatment.

Objective. Search for predictors of acute embolic complications in patients with severe carotid stenosis by using computed tomography angiography (CTA).

Material and methods. Computed tomography angiography of the carotid arteries and the aortic arch of 171 patients performed, of which 72 (42%) patients underwent carotid angioplasty with stenting and 99 (58%) patients – carotid endarterectomy. The CT-signs of atherosclerotic degeneration of the aortic wall were evaluated: the thickness of the aortic wall, the internal contour of the aorta (smooth or uneven), the presence or absence of ulceration of the aortic wall, the presence of an intraluminal thrombus, the extent of the detected changes to the circumference diameter (more or less than half). All patients from the endovascular intervention group underwent magnetic resonance imaging of the brain before the operation and on the first day after the operation.

Results. The most common and significant CT signs were identified, in which the probability of perioperative acute embolic complications increases: wall thickness of 4 mm or more (sensitivity 31,3%, specificity 92,5%), irregular internal contour (sensitivity 84,4%, specificity 45%), the presence of ulceration (sensitivity 53,1%, specificity 80%). The extent of the detected changes to the circumference of more than half (sensitivity 21,9%, specificity 97,5%) and intraluminal thrombus (sensitivity 9,4%, specificity 97,5%) are significant additional signs.

Conclusion. Computed tomography angiography are proposed to be used as objective prognostic criteria for embolic complications of surgical management, which affects the choice of the management, especially in the management of patients with atherosclerotic lesions of the internal carotid arteries with an asymptomatic course and a borderline value of the degree of stenosis.

References

  1. Lovrenčić-Huzjan A., Rundek T., Katsnelson M. Recommendations for management of patients with carotid stenosis. Stroke Res. Treatment. 2012: 175869. DOI: 10.1155/2012/175869
  2. Paul S., Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp. Neurol. 2021; 335: 113518. DOI: 10.1016/j.expneurol.2020.113518
  3. Magge R., Lau B.C., Soares B.P. Fischette S., Arora S., Tong E. et al. Clinical risk factors and CT imaging features of carotid atherosclerotic plaques as predictors of new incident carotid ischemic stroke: a retrospective cohort study. Am. J. Neuroradiol. 2013; 34 (2): 402–9. DOI: 10.3174/ajnr.A3228
  4. Zaitsev D.E., Lepekhina A.S., Trufanov G.E. Ultrasound signs of atherosclerotic plaques destabilization in carotid arteries. Russian Journal of Cardiology. 2019; 24 (12): 70–5 (in Russ.). DOI: 10.15829/1560-4071-2019-12-70-75
  5. Alshibaya M.D. Extended atherosclerotic lesion in a patient with multimorbidity: the surgeon’s view. Clinical case and historical note. Creative Cardiology. 2021; 15 (4): 534–46 (in Russ.). DOI: 10.24022/1997-3187-2021-15-4-534-546
  6. Chatzikonstantinou A., Wolf M.E., Schaefer A., Hennerici M.G. Asymptomatic and symptomatic carotid stenosis: an obsolete classification? Stroke Res. Treatment. 2012: 340798. DOI: 10.1155/2012/340798
  7. Kim N., Choi J., Whang K., Cho S.M., Koo Y.M., Kim J.Y. et al. Neurologic complications in patients with carotid artery stenting. J. Cerebrovasc. Endovasc. Neurosurg. 2019; 21: 86–93. DOI: 10.7461/jcen.2019.21.2.86
  8. Benetos G., Toutouzas K., Drakopoulou M., Tolis E., Masoura C., Nikolaou C. et al. Bilateral symmetry of local inflammatory activation in human carotid atherosclerotic plaques. Hellenic J. Cardiol. 2015; 56: 118–24.
  9. Beach K., Bergelin R., Leotta D.F., Primozich J., Sevareid P.M., Stutzman E.T. et al. Standardized ultrasound evaluation of carotid stenosis for clinical trials: University of Washington Ultrasound Reading Center. Cardiovasc. Ultrasound. 2010; 8: 39. DOI: 10.1186/1476-7120-8-39
  10. Tang Y., Wang M., Wu T., Zhang J., Yang R., Zhang B. et al. The role of carotid stenosis ultrasound scale in the prediction of ischemic stroke. Neurol. Sci. 2020; 41. DOI: 10.1007/s10072-019- 04204-8
  11. Khovrin V.V., Galyan T.N., Malakhova M.V., Khachatryan Z.R., Charchyan E.R. "Ultrafast" multispiral computer tomographyc angiography of aorta: current reality and perspectives. Medical Vizualization. 2017; (4): 33–40 (in Russ.). DOI: 10.24835/1607-0763-2017-4-33-40
  12. Magge R., Lau B.C., Soares B.P., Fischette S., Arora S., Tong E. et al. Clinical risk factors and CT imaging features of carotid atherosclerotic plaques as predictors of new incident carotid ischemic stroke: a retrospective cohort study. Am. J. Neuroradiol. 2013; 34 (2): 402–9. DOI: 10.3174/ajnr.A3228
  13. Serra R., Bracale U., Jiritano F., Ielapi N., Licastro N., Provenzano M. et al. The shaggy aorta syndrome: An updated review. Ann. Vasc. Surg. 2020; 70: 528–41. DOI: 10.1016/j.avsg.2020.08.009
  14. Safaya A., Bhuta K., Rajdeo H. Shaggy aorta syndrome: recurrent mesenteric embolus. Oxford Med. Case Rep. 2019; 11: 490–1. DOI: 10.1093/omcr/omz124
  15. Belov Yu.V., Charchyan E.R., Vinokurov I.A., Gemdjan E.G., Skrylev S.I., Lagoda O.V. et al The problem of cerebral protecting during operations on the aortic arch. Cardiology and Cardiovascular Surgery. 2013; 1: 40–2 (in Russ.).
  16. Narumi S., Sasaki M., Ohba H., Ogasawara K., Kobayashi M., Natori T. et al. Predicting carotid plaque characteristics using quantitative colorcoded T1-weighted MR plaque imaging: correlation with carotid endarterectomy specimens. Am. J. Neuroradiol. 2019; 35: 766–71. DOI: 10.3174/ajnr.A3741
  17. Tanashyan M.M., Medvedev R.B., Evdokimenko A.N., Gemdzhyan E.G., Skrylev S.I., Lagoda O.V. et al. Prediction of ischaemic lesions of the brain in reconstructive operations on internal carotid arteries. Angiology and Vascular Surgery. 2017; 23 (1): 59–65 (in Russ.).
  18. Maeda K., Ohki T., Kanaoka Y., Shukuzawa K., Baba T., Momose M. et al. A novel shaggy aorta scoring system to predict embolic complications following thoracic endovascular aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 2020; 60 (1): 57–66. DOI: 10.1016/j.ejvs.2019.11.031
  19. Kwon H., Han Y., Noh M., Gwon J.G., Cho Y.-P., Kwon T.-W. Impact of shaggy aorta in patients with abdominal aortic aneurysm following open or endovascular aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 2016; 52: 613–9. DOI: 10.1016/j.ejvs.2016.08.010
  20. Hosaka A., Motoki M., Kato M. Sugai H., Okubo N. Quantification of aortic shagginess as a predictive factor of perioperative stroke and long-term prognosis after endovascular treatment of aortic arch disease. J. Vasc. Surg. 2019; 69 (1): 15–23. DOI: 10.1016/j.jvs.2018.03.425
  21. Bobrikova E.E., Usov V.Yu., Shcherban N.V., Khaneev V.B., Shelkovnikova T.A., Bukhovets I.L. et al. High-resolution contrast-enhanced MRI in differential diagnosis of type of carotid plaque and it’s relationship to the ischemic brain damage. Bulletin of Siberian Medicine. 2013; 12 (3): 97–105 (in Russ.).
  22. Бобрикова Е.Э. Контрастированная МР-томография атеросклеротических бляшек брахиоцефальных артерий в оценке риска ишемических повреждений головного мозга. Российский электронный журнал лучевой диагностики. 2013; 3 (3): 81. Bobrikova E.E. Contrast-enhanced MRI of atherosclerotic plaques of brachiocephalic arteries in the risk assessment of ischemic brain damage. Russian Electronic Journal of Radiology. 2013; 3 (3): 81 (in Russ.).

About Authors

  • Natal’ya T. Pak, Cand. Med. Sci., Researcher; ORCID
  • Evgeniy Kobelev, Junior Researcher; ORCID
  • Vladimir Yu. Usov, Dr. Med. Sci., Professor, Chief Researcher; ORCID
  • Evgeniya E. Bobrikova, Junior Researcher; ORCID
  • Aleksandr M. Chernyavskiy, Dr. Med. Sci., Professor; ORCID
  • Tat’yana A. Bergen, Cand. Med. Sci., Head of Department; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery