High-energy and short-term ablation technique “High power, short duration” in the treatment of patients with atrial fibrillation
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Avanesyan G.A., Temirbulatov I.A., Dzhandzhagava D.A. High-energy and short-term ablation technique “High power, short duration” in the treatment of patients with atrial fibrillation. Creative Cardiology. 2022; 16 (2): 179–88 (in Russ.). DOI: 10.24022/1997-3187-2022-16-2-179-188
Received / Accepted: 16.03.2022 / 17.06.2022
Keywords: radiofrequency ablation atrial fibrillation high power short duration
Abstract
Over the past decades, percutaneous catheter ablation has become an important type of treatment for atrial fibrillation (AF). Pulmonary vein isolation is currently considered the cornerstone of management of paroxysmal and persistent AF. The duration of a catheter ablation procedure for radiofrequency isolation of pulmonary vein ostia using standard generator parameters largely depends on the surgeon, but usually lasts from 90 to 180 minutes. In an era of increasing numbers of patients with AF, the demand for ablation continues to grow. Against this background, the search for new techniques that can reduce the time spent in the left atrium and thereby reduce the risk of complications has also increased. One potential way is to use high-energy and short-term ablations (HECA).
This article describes the historical and evolutionary use of RF energy to perform ablation, discusses the technique of high energy and short duration ablation: “High power, short duration”.
References
- Houmsse M., Daoud E.G. Biophysics and clinical utility of irrigated-tip radiofrequency catheter ablation. Expert. Rev. Med. Devices. 2012; 9 (1): 59–70. DOI: 10.1586/erd.11.42
- Chugh S.S., Havmoeller R., Narayanan K., Singh D., Rienstra M., Benjamin E.J. et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014; 129 (8): 837–47. DOI: 10.1161/CIRCULATIONAHA.113.005119
- Stewart S., Murphy N.F., Walker A., McGuire A., McMurray J.J. Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart. 2004; 90 (3): 286–92. DOI: 10.1136/hrt. 2002.008748
- Jaïs P., Haïssaguerre M., Shah D.C., Takahashi A., Hocini M., Quiniou G. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998; 339 (10): 659–66. DOI: 10.1056/NEJM199809033391003
- Durrer D., Schoo L., Schuilenburg R.M., Wellens H.J. The role of premature beats in the initiation and the termination of supraventricular tachycardia in the Wolff–Parkinson–White syndrome. Circulation. 1967; 36 (5): 644–62. DOI: 10.1161/01.cir.36.5.644
- Morris S.N., Zipes D.P. His bundle electrocardiography during bidirectional tachycardia. Circulation. 1973; 48 (1): 32–6. DOI: 10.1161/01.cir. 48.1.32
- Wellens H.J., Durrer D. The role of an accessory atrioventricular pathway in reciprocal tachycardia. Observations in patients with and without the Wolff–Parkinson–White syndrome. Circulation. 1975; 52 (1): 58–72. DOI: 10.1161/01.cir.52.1.58
- Wellens H.J. Value and limitations of programmed electrical stimulation of the heart in the study and treatment of tachycardias. Circulation. 1978; 57 (5): 845–53. DOI: 10.1161/01.cir.57.5.845
- Vedel J., Frank R., Fontaine G., Fournial J.F., Grosgogeat Y. Bloc auriculo-venticulaire intrahisien définitif induit au cours d'une exploration endoventriculaire droite. Arch. Mal. Coeur. Vaiss. 1979; 72 (1): 107–12 (in French).
- Scheinman M.M., Morady F., Hess D.S., Gonzalez R. Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA. 1982; 248 (7): 851–5. Jackman W.M., Beckman K.J., McClelland J.H., Wang X., Friday K.J., Roman C.A. et al. Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency catheter ablation of slow-pathway conduction. N. Engl. J. Med. 1992; 327 (5): 313–8. DOI: 10.1056/NEJM 199207303270504
- Haïssaguerre M., Jaïs P., Shah D.C., Takahashi A., Hocini M., Quiniou G. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998; 339 (10): 659–66. DOI: 10.1056/NEJM 199809033391003
- Haïssaguerre M., Gencel L., Fischer B., Le Métayer P., Poquet F., Marcus F.I., Clémenty J. Successful catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 1994; 5 (12): 1045–52. DOI: 10.1111/j.1540-8167.1994.tb01146.x
- Reddy V.Y., Dukkipati S.R., Neuzil P., Natale A., Albenque J.P., Kautzner J. et al. Controlled trial of the safety and effectiveness of a contact force-sensing irrigated catheter for ablation of paroxysmal atrial fibrillation: results of the TactiCath Contact Force Ablation Catheter Study for Atrial Fibrillation (TOCCASTAR) Study. Circulation. 2015; 132 (10): 907–15. DOI: 10.1161/CIRCULATIONAHA.114.014092
- Reddy V.Y., Shah D., Kautzner J., Schmidt B., Saoudi N., Herrera C. et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm. 2012; 9 (11): 1789–95. DOI: 10.1016/j.hrthm.2012.07. 016
- Bhaskaran A., Chik W., Pouliopoulos J., Nalliah C., Qian P., Barry T. et al. A. Five seconds of 50–60 W radio frequency atrial ablations were transmural and safe: an in vitro mechanistic assessment and force-controlled in vivo validation. Europace. 2017; 19 (5): 874–80. DOI: 10.1093/europace/euw077
- Simmers T.A., de Bakker J.M., Wittkampf F.H., Hauer R.N. Effects of heating with radiofrequency power on myocardial impulse conduction: is radiofrequency ablation exclusively thermally mediated? J. Cardiovasc. Electrophysiol. 1996; 7 (3): 243–7. DOI: 10.1111/j.1540-8167.1996.tb00521.x
- Wittkampf F.H., Nakagawa H. RF catheter ablation: lessons on lesions. Pacing Clin. Electrophysiol. 2006; 29 (11): 1285–97. DOI: 10.1111/j.1540- 8159.2006.00533.x
- Leshem E., Zilberman I., Tschabrunn C.M., Barkagan M., Contreras-Valdes F.M., Govari A. et al. High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin. Electrophysiol. 2018; 4 (4): 467–79. DOI: 10.1016/j.jacep.2017.11.018
- Nath S., DiMarco J.P., Haines D.E. Basic aspects of radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 1994; 5 (10): 863–76. DOI: 10.1111/j.1540-8167.1994.tb01125.x
- Haines D. Biophysics of ablation: application to technology. J. Cardiovasc. Electrophysiol. 2004; 15 (10 Suppl.): S2–S11. DOI: 10.1046/j.1540- 8167.2004.15102.x
- Tungjitkusolmun S., Woo E.J., Cao H., Tsai J.Z., Vorperian V.R., Webster J.G. Thermal-electrical finite element modelling for radio frequency cardiac ablation: effects of changes in myocardial properties. Med. Biol. Eng. Comput. 2000; 38 (5): 562–8. DOI: 10.1007/BF02345754
- Vinnakota K.C., Bassingthwaighte J.B. Myocardial density and composition: a basis for calculating intracellular metabolite concentrations. Am. J. Physiol. Heart Circ. Physiol. 2004; 286 (5): H1742–9. DOI: 10.1152/ajpheart.00478.2003
- Bockeria L.A., Filatov A.G., Kovalev A.S. Electrophysiological markers of early manifestation of atrial fibrillation in patients with atrial tachycardias. Annals of arrhythmology. 2017; 14 (1): 40–4 (in Russ.). DOI: 10.15275/annaritmol.2017.1.5
- Kovalev A.S., Filatov A.G., Bockeria O.L., Bockeria L.A. A stepwise approach to the interventional treatment of idiopathic persistent atrial fibrillation (results of a pilot study). Annals of arrhythmology. 2019; 16 (1): 42–6 (in Russ.). DOI: 10.15275/annaritmol.2019.1.6
- Rozen G., Ptaszek L.M., Zilberman I., Douglas V., Heist E.K., Beeckler C. et al. Safety and efficacy of delivering high-power short-duration radiofrequency ablation lesions utilizing a novel temperature sensing technology. Europace. 2018; 20 (FI_3): f444–50. DOI: 10.1093/europace/euy031
- Borggrefe M., Budde T., Podczek A. High frequency alternating current ablation of an accessory pathway in humans. J. Am. Coll. Cardiol. 1987; 10: 576–82.
- Bockeria L.A., Bazaev V.A., Filatov A.G., Bockeria O.L., Viskov R.V., Melikulov M.Kh. et al. Electrophysiological remodeling in atrial fibrillation. Medical Sciences. 2004; 4: 87–9 (in Russ.).
- Packer D.L., Mark D.B., Robb R.A., Monahan K.H., Bahnson T.D., Poole J.E. et al. CABANA Investigators. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA Randomized Clinical Trial. JAMA. 2019; 321 (13): 1261–74. DOI: 10.1001/jama.2019.0693
- Chinitz L.A., Melby D.P., Marchlinski F.E., Delaughter C., Fishel R.S., Monir G. et al. Safety and efficiency of porous-tip contact-force catheter for drug-refractory symptomatic paroxysmal atrial fibrillation ablation: results from the SMART SF trial. Europace. 2018; 20 (FI_3): f392–f400. DOI: 10.1093/europace/eux264
- Patel P.J., Padanilam B.J. High-power short-duration ablation: Better, safer, and faster? J. Cardiovasc. Electrophysiol. 2018; 29 (11): 1576–7. DOI: 10.1111/jce.13749
- Whitaker J., Fish J., Harrison J., Chubb H., Williams S.E., Fastl T. et al. Lesion index-guided ablation facilitates continuous, transmural, and durable lesions in a porcine recovery model. Circ. Arrhythm. Electrophysiol. 2018; 11 (4): e005892. DOI: 10.1161/CIRCEP.117.005892
- Kumagai K., Toyama H. High-power, short-duration ablation during box isolation for atrial fibrillation. J. Arrhythm. 2020; 36 (5): 899–904. DOI: 10.1002/joa3.12407
- Rozen G., Ptaszek L., Zilberman I., Cordaro K., Heist E.K., Beeckler C. et al. Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter. Heart Rhythm. 2017; 14 (2): 248–54. DOI: 10.1016/j.hrthm.2016.11.013
- Bourier F., Duchateau J., Vlachos K., Lam A., Martin C.A., Takigawa M. et al. High-power shortduration versus standard radiofrequency ablation: Insights on lesion metrics. J. Cardiovasc. Electrophysiol. 2018; 29 (11): 1570–5. DOI: 10.1111/jce.13724
- Muthalaly R.G., John R.M., Schaeffer B., Tanigawa S., Nakamura T., Kapur S. et al. Temporal trends in safety and complication rates of catheter ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 2018; 29 (6): 854–60. DOI: 10.1111/jce.13484
- Irastorza R.M., d'Avila A., Berjano E. Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: Results of a computer-modeling study. J. Cardiovasc. Electrophysiol. 2018; 29 (2): 322–7. DOI: 10.1111/jce.13363
- Barkagan M., Contreras-Valdes F.M., Leshem E., Buxton A.E., Nakagawa H., Anter E. High-power and short-duration ablation for pulmonary vein isolation: Safety, efficacy, and long-term durability. J. Cardiovasc. Electrophysiol. 2018; 29 (9): 1287–96. DOI: 10.1111/jce.13651
- Winkle R.A., Moskovitz R., Hardwin Mead R., Engel G., Kong M.H., Fleming W. et al. Atrial fibrillation ablation using very short duration 50 W ablations and contact force sensing catheters. J. Interv. Card. Electrophysiol. 2018; 52 (1): 1–8. DOI: 10.1007/s10840-018-0322-6
- Kewcharoen J., Techorueangwiwat C., Kanitsoraphan C., Leesutipornchai T., Akoum N., Bunch T.J., Navaravong L. High-power short duration and low-power long duration in atrial fibrillation ablation: a meta-analysis. J. Cardiovasc. Electrophysiol. 2021; 32 (1): 71–82. DOI: 10.1111/jce.14806
- Bunch T.J., May H.T., Bair T.L., Crandall B.G., Cutler M.J., Mallender C. et al. Long-term outcomes after low power, slower movement versus high power, faster movement irrigated-tip catheter ablation for atrial fibrillation. Heart Rhythm. 2020; 17 (2): 184–9. DOI: 10.1016/j.hrthm.2019.08.001