Cellular and humoral mechanisms of interstitial myocardial fibrosis

Authors: Khugaev G.A.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2022-16-4-470-482

For citation: Khugaev G.A. Cellular and humoral mechanisms of interstitial myocardial fibrosis. Creative Cardiology. 2022; 16 (4): 470–82 (in Russ.). DOI: 10.24022/1997-3187-2022-16-4-470-482

Received / Accepted:  27.06.2022 / 07.12.2022

Keywords: interstitial myocardial fibrosis left ventricle fibroblasts myofibroblasts myocardial pressure overload

Download
Full text:  

 

Abstract

Interstitial myocardial fibrosis is a typical pathological process associated with various cardiovascular diseases, which is an increasing interstitial space in myocardium as a result of excessive accumulation of interstitial cells and extracellular matter in it. The most common cause of interstitial fibrosis is myocardial pressure overload. All known types of myocardial cells participate in the development of fibrosis, both interstitial (fibroblasts, myofibroblasts, immune cells, pericytes, endothelial cells, telocytes) and cardiomyocytes. The main mechanism of myocardial fibrosis is the activation of resident fibroblasts and their transformation into myofibroblasts, which are the main producers of both stromal and matricellular proteins. Immune cells, pericytes, endothelial cells, telocytes and cardiomyocytes activate fibroblasts through signaling of mediators such as growth factors (transforming growth factor β, platelet growth factor) and cytokines (tumor necrosis factor α, interleukin 1, 4, 6, and 10). In addition, fibroblasts can directly perceive mechanical stress with the participation of mechanosensitive receptors, ion channels and integrin proteins. Prolonged pressure overload leads to a change in the balance of matrix metalloproteinases and their inhibitors, dilation of the left ventricle and systolic dysfunction.

This review article discusses the mechanisms of interstitial myocardial fibrosis with special attention to the interaction of interstitial cells and cardiomyocytes.

References

  1. Frangogiannis N.G. Cardiac fibrosis. Cardiovasc. Res. 2021; 117 (6): 1450–88. DOI: 10.1093/cvr/cvaa324
  2. Humeres C., Frangogiannis N.G. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic. Transl. Sci. 2019; 4 (3): 449–67. DOI: 10.1016/j.jacbts.2019.02.006
  3. Frangogiannis N.G. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol. Aspects Med. 2019; 65: 70–99. DOI: 10.1016/j.mam.2018.07.001
  4. Serov V.V., Shekhter A.B. Connective tissue. Moscow: Meditsina; 1981 (in Russ.).
  5. Ieda M., Tsuchihashi T., Ivey K.N., Ross R.S., Hong T.T., Shaw R.M., Srivastava D. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell. 2009; 16 (2): 233–44. DOI: 10.1016/j.devcel.2008.12.007
  6. Eghbali M., Blumenfeld O.O., Seifter S., Buttrick P.M., Leinwand L.A., Robinson T.F. et al. Localization of types I, III and IV collagen mRNAs in rat heart cells by in situ hybridization. J. Mol. Cell. Cardiol. 1989; 21 (1): 103–13. DOI: 10.1016/0022-2828(89)91498-3
  7. Frangogiannis N.G. The extracellular matrix in ischemic and nonischemic heart failure. Circ. Res. 2019; 125 (1): 117–46. DOI: 10.1161/CIRCRESAHA.119.311148
  8. Tallquist M.D., Molkentin J.D.. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 2017; 14 (8): 484–91. DOI: 10.1038/nrcardio.2017.57
  9. Nevers T., Salvador A.M., Velazquez F., Ngwenyama N., Carrillo-Salinas F.J., Aronovitz M. et al. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J. Exp. Med. 2017; 214: 3311–29. DOI: 10.1084/jem.20161791
  10. Juliano G.R., Skaf M.F., Ramalho L.S., Juliano G.R., Torquato B.G.S., Oliveira M.S. et al. Analysis of mast cells and myocardial fibrosis in autopsied patients with hypertensive heart disease. Rev. Port. Cardiol. (Engl. Ed). 2020; 39 (2): 89–96. DOI: 10.1016/j.repc.2019.11.003
  11. Sperr W.R., Bankl H.C., Mundigler G., Klappacher G., Grossschmidt K., Agis H. et al. The human cardiac mast cell: localization, isolation, phenotype, and functional characterization. Blood. 1994; 84 (11): 3876–84. PMID: 7524750. 12. Shiota N., Rysä J., Kovanen P.T., Ruskoaho H., Kokkonen J.O., Lindstedt K.A. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J. Hypertens. 2003; 21 (10): 1935–44. DOI: 10.1097/00004872-200310000-00022
  12. Wei C.C., Lucchesi P.A., Tallaj J., Bradley W.E., Powell P.C., Dell’Italia L.J. Cardiac interstitial bradykinin and mast cells modulate pattern of LV remodeling in volume overload in rats. Am. J. Physiol. Heart Circ. Physiol. 2003; 285 (2): H784–92. DOI: 10.1152/ajpheart.00793.2001
  13. Patella V., Marino` I., Arbustini E., LamparterSchummert B., Verga L., Adt M., Marone G. Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation. 1998; 97 (10): 971–8. DOI: 10.1161/01.cir.97.10.971
  14. Hara M., Ono K., Hwang M.W., Iwasaki A., Okada M., Nakatani K. et al. Evidence for a role of mast cells in the evolution to congestive heart failure. J. Exp. Med. 2002; 195 (3): 375–81. DOI: 10.1084/jem.20002036
  15. Liao C.H., Akazawa H., Tamagawa M., Ito K., Yasuda N., Kudo Y. et al. Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J. Clin. Invest. 2010; 120 (1): 242–53. DOI: 10.1172/JCI39942
  16. Levick S.P., McLarty J.L., Murray D.B., Freeman R.M., Carver W.E., Brower G.L. Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension. 2009; 53 (6): 1041–7. DOI: 10.1161/HYPERTENSIONAHA.108.123158
  17. Zhang W., Chancey A.L., Tzeng H.P., Zhou Z., Lavine K.J., Gao F. et al. The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell-fibroblast interactions. Circulation. 2011; 124 (19): 2106–16. DOI: 10.1161/CIRCULATIONAHA.111.052399
  18. Brower G.L., Janicki J.S. Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J. Card. Fail. 2005; 11 (7): 548–56. DOI: 10.1016/j.cardfail.2005.05.005
  19. Kolck U.W., Alfter K., Homann J., von Kügelgen I., Molderings G.J. Cardiac mast cells: implications for heart failure. J. Am. Coll. Cardiol. 2007; 49 (10): 1107. DOI: 10.1016/j.jacc.2006.12.018
  20. Hatamochi A., Fujiwara K., Ueki H. Effects of histamine on collagen synthesis by cultured fibroblasts derived from guinea pig skin. Arch. Dermatol. Res. 1985; 277 (1): 60–4. DOI: 10.1007/BF00406482
  21. Kunzmann S., Schmidt-Weber C., Zingg J.M., Azzi A., Kramer B.W., Blaser K. et al. Connective tissue growth factor expression is regulated by histamine in lung fibroblasts: potential role of histamine in airway remodeling. J. Allergy Clin. Immunol. 2007; 119 (6): 1398–407. DOI: 10.1016/j.jaci.2007.02.018
  22. Kim J., Ogai A., Nakatani S., Hashimura K., Kanzaki H., Komamura K. et al. Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J. Am. Coll. Cardiol. 2006; 48 (7): 1378–84. DOI: 10.1016/j.jacc.2006.05.069
  23. Urata H., Kinoshita A., Misono K.S., Bumpus F.M., Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J. Biol. Chem. 1990; 265 (36): 22348–57. Erratum in: J. Biol. Chem. 1991; 266 (18): 12114. PMID: 2266130.
  24. Zhao X.Y., Zhao L.Y., Zheng Q.S., Su J.L., Guan H., Shang F.J. et al. Chymase induces profibrotic response via transforming growth factor-beta 1/Smad activation in rat cardiac fibroblasts. Mol. Cell Biochem. 2008; 310 (1–2): 159–66. DOI: 10.1007/s11010-007-9676-2
  25. Urata H., Healy B., Stewart R.W., Bumpus F.M., Husain A. Angiotensin II-forming pathways in normal and failing human hearts. Circ. Res. 1990; 66 (4): 883–90. DOI: 10.1161/01.res.66.4.883
  26. Stewart J.A. Jr, Wei C.C., Brower G.L., Rynders P.E., Hankes G.H., Dillon A.R. et al. Cardiac mast cell- and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. J. Mol. Cell. Cardiol. 2003; 35 (3): 311–9. DOI: 10.1016/s0022-2828(03)00013-0
  27. Matsumoto T., Wada A., Tsutamoto T., Ohnishi M., Isono T., Kinoshita M. Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation. 2003; 107 (20): 2555–8. DOI: 10.1161/01.CIR.0000074041.81728.79
  28. McLarty J.L., Meléndez G.C., Brower G.L., Janicki J.S., Levick S.P. Tryptase/proteaseactivated receptor 2 interactions induce selective mitogen-activated protein kinase signaling and collagen synthesis by cardiac fibroblasts. Hypertension. 2011; 58 (2): 264–70. DOI: 10.1161/HYPERTENSIONAHA.111.169417
  29. Frangogiannis N.G., Perrard J.L., Mendoza L.H., Burns A.R., Lindsey M.L., Ballantyne C.M. et al. Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation. 1998; 98 (7): 687–98. DOI: 10.1161/01.cir.98.7.687
  30. Joseph J., Kennedy R.H., Devi S., Wang J., Joseph L., Hauer-Jensen M. Protective role of mast cells in homocysteine-induced cardiac remodeling. Am. J. Physiol. Heart Circ. Physiol. 2005; 288 (5): H2541–5. DOI: 10.1152/ajpheart.00806.2004
  31. Barron L., Wynn T.A. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am. J. Physiol. Gastrointest. Liver Physiol. 2011; 300 (5): G723–8. DOI: 10.1152/ajpgi.00414.2010
  32. Cieslik K.A., Taffet G.E., Carlson S., Hermosillo J., Trial J., Entman M.L. Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. J. Mol. Cell. Cardiol. 2011; 50 (1): 248–56. DOI: 10.1016/j.yjmcc.2010.10.019
  33. Chiaramonte M.G., Donaldson D.D., Cheever A.W., Wynn T.A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J. Clin. Invest. 1999; 104 (6): 777–85. DOI: 10.1172/JCI7325
  34. Wynn T.A. Integrating mechanisms of pulmonary fibrosis. J. Exp. Med. 2011; 208 (7): 1339–50. DOI: 10.1084/jem.20110551
  35. Baldeviano G.C., Barin J.G., Talor M.V., Srinivasan S., Bedja D., Zheng D. et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ. Res. 2010; 106 (10): 1646–55. DOI: 10.1161/CIRCRESAHA.109.213157
  36. Kanellakis P., Dinh T.N., Agrotis A., Bobik A. CD4+CD25+Foxp3+ regulatory T cells suppress cardiac fibrosis in the hypertensive heart. J. Hypertens. 2011; 29 (9): 1820–8. DOI: 10.1097/HJH. 0b013e328349c62d
  37. Kvakan H., Kleinewietfeld M., Qadri F., Park J.K., Fischer R., Schwarz I. et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation. 2009; 119 (22): 2904–12. DOI: 10.1161/CIRCULATIONAHA.108.832782
  38. Bujak M., Dobaczewski M., Gonzalez-Quesada C., Xia Y., Leucker T., Zymek P. et al. Induction of the CXC chemokine interferon-gammainducible protein 10 regulates the reparative response following myocardial infarction. Circ. Res. 2009; 105 (10): 973–83. DOI: 10.1161/CIRCRESAHA.109.199471
  39. Wei H., Bedja D., Koitabashi N., Xing D., Chen J., Fox-Talbot K. et al. Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-β signaling. Proc. Natl. Acad. Sci. USA. 2012; 109 (14): E841–50. DOI: 10.1073/pnas.1202081109
  40. Dolmatova E., Spagnol G., Boassa D., Baum J.R., Keith K., Ambrosi C. et al. Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am. J. Physiol. Heart Circ. Physiol. 2012; 303 (10): H1208–18. DOI: 10.1152/ajpheart.00251.2012
  41. Rickard A.J., Morgan J., Bienvenu L.A., Fletcher E.K., Cranston G.A., Shen J.Z. et al. Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension. 2012; 60 (6): 1443–50. DOI: 10.1161/HYPERTENSIONAHA.112.203158
  42. Kurisu S., Ozono R., Oshima T., Kambe M., Ishida T., Sugino H. et al. Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis. Hypertension. 2003; 41 (1): 99–107. DOI: 10.1161/01.hyp.0000050101.90932.14
  43. Koitabashi N., Danner T., Zaiman A.L., Pinto Y.M., Rowell J., Mankowski J. et al. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload. J. Clin. Invest. 2011; 121 (6): 2301–12. DOI: 10.1172/JCI44824
  44. Sundberg C., Ivarsson M., Gerdin B., Rubin K. Pericytes as collagen-producing cells in excessive dermal scarring. Lab. Invest. 1996; 74 (2): 452–66. PMID: 8780163.
  45. Humphreys B.D., Lin S.L., Kobayashi A., Hudson T.E., Nowlin B.T., Bonventre J.V. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 2010; 176 (1): 85–97. DOI: 10.2353/ajpath.2010.090517
  46. Sarkisov D.S., Kolokol’chikova E.G., Kaem R.I., Pal’tsyn A.A. On some mechanisms of reduction of the vascular system of granulation tissue during its maturation. Archive of Pathology. 1989; 1: 9–14 (in Russ.).
  47. Sarkisov D.S., Kolokol’chikova E.G., Pal’- tsyn A.A. On structural transformations of the vascular system of the connective tissue basis of the skin. Bylletin of Experimental Biology and Medicine. 1987; 103 (6): 730–2 (in Russ.).
  48. Sarkisov D.S., Pal’tsyn A.A., Muzykant L.I., Kolokol’chikova E.G., Vtyurin B.V., Dudnikova G.N. Morphology of wound process. In: Kuzin M.I., Kostyuchenok B.M. (Eds) Wounds and wound infection. Moscow: Meditsina; 1990: 38–68 (in Russ.).
  49. Kramann R., Schneider R.K., DiRocco D.P., Machado F., Fleig S., Bondzie P.A. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell. Stem. Cell. 2015; 16 (1): 51–66. DOI: 10.1016/j.stem.2014.11.004
  50. Popescu L.M., Manole E., Serboiu C.S., Manole C.G., Suciu L.C., Gherghiceanu M., Popescu B.O. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J. Cell. Mol. Med. 2011; 15 (6): 1379–92. DOI: 10.1111/j.1582-4934.2011.01330.x
  51. Zheng Y., Bai C., Wang X. Telocyte morphologies and potential roles in diseases. J. Cell. Physiol. 2012; 227 (6): 2311–7. DOI: 10.1002/jcp.23022
  52. Popescu L.M., Fertig E.T., Gherghiceanu M. Reaching out: junctions between cardiac telocytes and cardiac stem cells in culture. J. Cell. Mol. Med. 2016; 20 (2): 370–80. DOI: 10.1111/jcmm.12719
  53. Polyakova V., Loeffler I., Hein S., Miyagawa S., Piotrowska I., Dammer S. et al. Fibrosis in endstage human heart failure: severe changes in collagen metabolism and MMP/TIMP profiles. Int. J. Cardiol. 2011; 151 (1): 18–33. DOI: 10.1016/j.ijcard.2010.04.053
  54. Richter M., Kostin S. The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J. Cell. Mol. Med. 2015; 19 (11): 2597–606. DOI: 10.1111/jcmm.12664
  55. Polyakova V., Miyagawa S., Szalay Z., Risteli J., Kostin S. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J. Cell. Mol. Med. 2008; 12 (1): 189–208. DOI: 10.1111/j.1582-4934.2008.00219.x
  56. Sukhacheva T.V., Nizyaeva N.V., Samsonova M.V., Cherniaev A.L., Burov A.A., Iurova M.V. et al. Morpho-functional changes of cardiac telocytes in isolated atrial amyloidosis in patients with atrial fibrillation. Sci. Rep. 2021; 11 (1): 3563. DOI: 10.1038/s41598-021-82554-0
  57. Dewald O., Frangogiannis N.G., Zoerlein M., Duerr G.D., Klemm C., Knuefermann P. et al. Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. Proc. Natl. Acad. Sci. USA. 2003; 100 (5): 2700–5. DOI: 10.1073/pnas.0438035100
  58. Brilla C.G., Matsubara L., Weber K.T. Advanced hypertensive heart disease in spontaneously hypertensive rats. Lisinopril-mediated regression of myocardial fibrosis. Hypertension. 1996; 28 (2): 269–75. DOI: 10.1161/01.hyp.28.2.269
  59. Brilla C.G., Funck R.C., Rupp H. Lisinoprilmediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000; 102 (12): 1388–93. DOI: 10.1161/01.cir.102.12.1388
  60. Everett R.J., Tastet L., Clavel M.A., Chin C.W.L., Capoulade R., Vassiliou V.S. et al. Progression of hypertrophy and myocardial fibrosis in aortic stenosis: a multicenter cardiac magnetic resonance study. Circ. Cardiovasc. Imaging. 2018; 11 (6): e007451. DOI: 10.1161/CIRCIMAGING.117. 007451
  61. Farris S.D., Don C., Helterline D., Costa C., Plummer T., Steffes S. et al. Cell-specific pathways supporting persistent fibrosis in heart failure. J. Am. Coll. Cardiol. 2017; 70 (3): 344–54. DOI: 10.1016/j.jacc.2017.05.040
  62. Weidemann F., Herrmann S., Störk S., Niemann M., Frantz S., Lange V. et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation. 2009; 120 (7): 577–84. DOI: 10.1161/CIRCULATIONAHA.108.847772
  63. Frangogiannis N.G., Shimoni S., Chang S.M., Ren G., Dewald O., Gersch C. et al. Active interstitial remodeling: an important process in the hibernating human myocardium. J. Am. Coll. Cardiol. 2002; 39 (9): 1468–74. DOI: 10.1016/s0735-1097(02)01792-8

About Authors

Georgiy A. Khugaev, Junior Researcher, Assistant of the Chair; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery