Dysfunctions of the permanent pacemaker: the main causes, problems of diagnosis and prevention

Authors: Kadyraliev S.O., Baranovich V.Yu., Faybushevich A.G., Maksimkin D.A.

Company: Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2022-16-4-483-496

For citation: Kadyraliev S.O., Baranovich V.Yu., Faybushevich A.G., Maksimkin D.A. Dysfunctions of the permanent pacemaker: the main causes, problems of diagnosis and prevention. Creative Cardiology. 2022; 16 (4): 483–96 (in Russ.). DOI: 10.24022/1997-3187-2022-16-4-483-496

Received / Accepted:  11.10.2022 / 14.11.2022

Keywords: pacemaker dysfunction of the pacemaker bradyarrhythmia diagnosis of dysfunctions of the pacemaker

Download
Full text:  

 

Abstract

General concerns of diagnosis and correction of permanent pacemaker (PM) dysfunctions in patients with bradyarrhythmias are presented, based on the analysis of modern trials. Comorbidities of patients has been shown to contribute to more frequent occurrence of PM system dysfunctions. Moreover, the role of heart function, technical features of the pacemaker implantation procedure for the occurrence of PM system dysfunctions was noted. The most common types of dysfunctions, the main problems of their timely diagnosis, as well as possible methods of prevention of life-threatening conditions arising against the background of failure in the work of the PM are highlighted. Possible methods for the prevention of life-threatening conditions that occur against the background of a failure in the work of the pacemaker are proposed, which should be used when selecting patients for surgical treatment of bradyarrhythmias.

It is shown that information about the actual number and causes of dysfunctions of the РМ system remains insufficient. A large number of dysfunctions of implanted pacemakers remain undiagnosed and unregistered, which affects the quality of life, and can also pose a certain threat to the patient. Moreover, due attention is not paid to the features of РМ programming and timely diagnosis of problems in the РМ, which is a key problem in the development of dysfunctions. In this regard, it seems relevant to conduct further research aimed at studying the quality of life of patients with implanted permanent pacemakers in order to clarify additional mechanisms of dysfunction and improve measures to prevent them

References

  1. Cingolani E., Goldhaber J.I., Marbán E. Nextgeneration pacemakers: from small devices to biological pacemakers. Nat. Rev. Cardiol. 2018; 15 (3): 139–50. DOI: 10.1038/nrcardio.2017.165
  2. Mulpuru S.K., Madhavan M., McLeod C.J., Cha Y.M., Friedman P.A. Cardiac pacemakers: function, troubleshooting, and management: Part 1 of a 2-Part Series. J. Am. Coll. Cardiol. 2017; 69 (2): 189–210. DOI: 10.1016/j.jacc.2016.10.061
  3. Sapelnikov O.V., Kulikov A.A., Cherkashin D.I., Grishin I.R., Nikolaeva O.A., Ardus D.F. et al. Removal of electrodes of implanted systems. Status of the problem. Circulation Pathology and Cardiac Surgery. 2019; 23 (4): 47–52 (in Russ.). DOI: 10.21688/1681-3472-2019-4-47-52
  4. Bowman H.C., Shannon K.M., Biniwale R., Moore J.P. Cardiac implantable device outcomes and lead survival in adult congenital heart disease. Int. J. Cardiol. 2021; 324: 52–9. DOI: 10.1016/j.ijcard.2020.09.027
  5. Shavarov A.A., Dzhandzhgava A.O., Ardashev A.V. Malfunction of pacemakers and defibrillators. In: Ardashev A.V. (Ed.) Clinical arrhythmology. Moscow; 2009 (in Russ.).
  6. Gomez-Polo J.C., Higueras Nafría J., MartínezLosas P., Can~adas-Godoy V., Bover-Freire R., Pérez-Villacastín J. Poor knowledge of potentially lethal electrocardiographic patterns in asymptomatic patients among noncardiologist physicians, and underestimation of their seriousness. Rev. Esp. Cardiol. (Engl. Ed). 2017; 70 (6): 507–8. DOI: 10.1016/j.rec.2016.09.021
  7. Domagała S., Domagała M., Chyła J., Wojciechowska C., Janion M., Polewczyk A. Complications of electrotherapy – the dark side of treatment with cardiac implantable electronic devices. Adv. Interv. Kardiol. 2018; 14 (1): 15–25. DOI: 10.5114/aic.2018.74351
  8. Janosik D.L., Redd R.M., Buckingham T.A., Blum R.I., Wiens R.D., Kennedy H.L. Utility of ambulatory electrocardiography in detecting pacemaker dysfunction in the early postimplantation period. Am. J. Cardiol. 1987; 60 (13): 1030–5. DOI: 10.1016/0002-9149(87)90347-x
  9. Bartsch C., Irnich W., Risse M., Junge M., Weiler G. Postmortem in situ diagnosis of pacemakers and electrodes to detect dysfunction. Leg. Med. (Tokyo). 2003; 5 (1): 397–400. DOI: 10.1016/s1344-6223(02)00171-2
  10. Bartsch C., Irnich W., Junge M., Stertmann W.A., Risse M., Weiler G. Post-mortem evaluation of 415 pacemakers: in situ measurements and bench tests. Europace. 2005; 7 (2): 175–80. DOI: 10.1016/j.eupc.2004.12.010
  11. Maisel W.H., Moynahan M., Zuckerman B.D., Gross T.P., Tovar O.H., Tillman D.B. et al. Pacemaker and ICD generator malfunctions: analysis of Food and Drug Administration annual reports. JAMA. 2006; 295 (16): 1901–6. DOI: 10.1001/jama.295.16.1901
  12. Belvin D., Hirschl D., Jain V.R., Godelman A., Stein M.W., Gross J.N. et al. Chest radiographs are valuable in demonstrating clinically significant pacemaker complications that require reoperation. Can. Assoc. Radiol. J. 2011; 62 (4): 288–95. DOI: 10.1016/j.carj.2010.04.016
  13. Tseng Z.H., Hayward R.M., Clark N.M., Mulvanny C.G., Colburn B.J., Ursell P.C. et al. Sudden death in patients with cardiac implantable electronic devices. JAMA Intern. Med. 2015; 175 (8): 1342–50. DOI: 10.1001/jamainternmed.2015.2641
  14. Markewitz A. Bundesfachgruppe Herzschrittmacher und Defibrillatoren. Jahresbericht 2017 des Deutschen Herzschrittmacher- und DefibrillatorRegisters – Teil 2: Implantierbare KardioverterDefibrillatoren (ICD). Herzschrittmach. Elektrophysiol. 2019; 30 (4): 389–403. DOI: 10.1007/s00399-019-00648-9
  15. Kallinen L.M., Hauser R.G., Lee K.W., Almquist A.K., Katsiyiannis W.T., Tang C.Y. et al. Failure of impedance monitoring to prevent adverse clinical events caused by fracture of a recalled high-voltage implantable cardioverterdefibrillator lead. Heart Rhythm. 2008; 5 (6): 775–9. DOI: 10.1016/j.hrthm.2008.02.039
  16. Nguyen T., Rinaldi C.A. Pacemaker syndrome due to atrial lead fracture. Clin. Case Rep. 2019; 8 (1): 226–7. DOI: 10.1002/ccr3.2579
  17. Khurwolah M.R., Vezi B.Z. Pacemaker syndrome with sub-acute left ventricular systolic dysfunction in a patient with a dual-chamber pacemaker: consequence of lead switch at the header. Cardiovasc. J. Afr. 2017; 28 (2): 134–6. DOI: 10.5830/CVJA2016-081
  18. Nguyen U.C., Crijns HJ.GM. Undersensing, asynchronous pacing, and ventricular fibrillation. Europace. 2019; 21 (7): 1078. DOI: 10.1093/europace/euz009
  19. Topf A., Motloch L.J., Kraus J., Danmayr F., Mirna M., Schernthaner C. et el. Exercise-related T-wave oversensing: an underestimated cause of reduced exercise capacity in a pacemaker-dependent patient – a case report and review of the literature. J. Interv. Card. Electrophysiol. 2020; 59 (1): 67–70. DOI: 10.1007/s10840-019-00698-6
  20. Ryan J.D., Tempel N.D., Engle D.D., Hayes D.L., Cha Y.M., Asirvatham S.J. Oversensing of transthoracic excitation stimuli in contemporary pacemakers. Pacing Clin. Electrophysiol. 2018; 41 (2): 161–6. DOI: 10.1111/pace.13269
  21. Frontera A., Klotz N., Martin R., Haïssaguerre M., Ritter P., Bordachar P. Transient undersensing of the ventricular lead during abdominal ultrasound as cause of ventricular fibrillation. Pacing Clin. Electrophysiol. 2018; 41 (7): 880. DOI: 10.1111/pace.13362
  22. Theodoropoulos K.C., Liakopoulou A., Tsagkaropoulos S., Kassimis G., Antonitsis P., Anastasiadis K. Under-sensing by a temporary pacemaker after cardiac surgery and ventricular fibrillation. Lancet. 2022; 399 (10325): 677. DOI: 10.1016/S0140-6736(21)02443-0
  23. Pai P.G., Hegde N.N. Troubleshooting a pacemaker output failure: a case report. J. Electrocardiol. 2021; 66: 148–51. DOI: 10.1016/j.jelectrocard.2021.04.008
  24. Montgomery J.A., Ellis C.R. Longevity of cardiovascular implantable electronic devices. Card. Electrophysiol. Clin. 2018; 10 (1): 1–9. DOI: 10.1016/j.ccep.2017.11.001
  25. Munawar D.A., Mahajan R., Linz D., Wong G.R., Khokhar K.B., Thiyagarajah A. et al. Predicted longevity of contemporary cardiac implantable electronic devices: a call for industry-wide "standardized" reporting. Heart Rhythm. 2018; 15 (12): 1756–63. DOI: 10.1016/j.hrthm.2018.07.029
  26. Hadjis A., Proietti R., Essebag V. Implantation of cardiac resynchronization therapy devices using three leads by cephalic vein dissection approach. Europace. 2017; 19 (9): 1514–20. DOI: 10.1093/europace/euw276
  27. Mond H.G., Freitag G. The cardiac implantable electronic device power source: evolution and revolution. Pac. Clin. Electrophysiol. 2014; 37 (12): 1728–45. DOI: 10.1111/pace.12526
  28. Mittal S., Wilkoff B.L., Poole J.E., Kennergren C., Wright D.J., Berman B.J. et al. Low-temperature electrocautery reduces adverse effects from secondary cardiac implantable electronic device procedures: insights from the WRAP-IT trial. Heart Rhythm. 2021;18 (7): 1142–50. DOI: 10.1016/j.hrthm.2021.03.033
  29. Wasserlauf J., Esheim T., Jarett N.M., Chan E.K.Y., Schaller R.D., Garcia FC. et al. Avoiding damage to transvenous leads – a comparison of electrocautery techniques and two insulated electrocautery blades. Pacing Clin. Electrophysiol. 2018; 41 (12): 1593–9. DOI: 10.1111/pace.13519
  30. Kakouros N., Kakouros S.N. Pacemaker malfunction risks within the electromagnetically rich hospital environment. Hellenic. J. Cardiol. 2018; 59 (4): 247–8. DOI: 10.1016/j.hjc.2017.11.009
  31. Lee J.Z., Mulpuru S.K., Shen W.K. Leadless pacemaker: performance and complications. Trends Cardiovasc. Med. 2018; 28 (2): 130–41. DOI: 10.1016/j.tcm.2017.08.001
  32. Pakarinen S., Oikarinen L., Toivonen L. Shortterm implantation-related complications of cardiac rhythm management device therapy: a retrospective single-centre 1-year survey. Europace. 2010; 12 (1): 103–8. DOI: 10.1093/europace/eup361
  33. Palmisano P., Accogli M., Zaccaria M., Luzzi G., Nacci F., Anaclerio M. et al. Rate, causes, and impact on patient outcome of implantable device complications requiring surgical revision: large population survey from two centres in Italy. Europace. 2013; 15 (4): 531–40. DOI: 10.1093/europace/eus337
  34. Kikuchi K., Abe H., Nagatomo T., Nakashima Y. Microdislodgment: a likely mechanism of pacing failure with high impedence small area electrodes. Pacing Clin. Electrophysiol. 2003; 26 (7 Pt1): 1541–3. DOI: 10.1046/j.1460-9592.2003.t01-1- 00224.x
  35. Schulz N., Püschel K., Turk E.E. Fatal complications of pacemaker and implantable cardioverterdefibrillator implantation: medical malpractice? Interact. Cardiovasc. Thorac. Surg. 2009; 8 (4): 444–8. DOI: 10.1510/icvts.2008.189043
  36. Morales J.L., Nava S., Márquez M.F., González J., Gómez-Flores J., Colín L. et al. Idiopathic lead migration: concept and variants of an uncommon cause of cardiac implantable electronic device dysfunction. JACC Clin. Electrophysiol. 2017; 3 (11): 1321–9. DOI: 10.1016/j.jacep.2017.02.015
  37. Wynn G.J., Weston C., Cooper R.J., Somauroo J.D. Inadvertent left ventricular pacing through a patent foramen ovale: identification, management and implications for postpacemaker implantation checks. BMJ Case Rep. 2013; 2013: bcr2012008312. DOI: 10.1136/bcr-2012-008312
  38. Ozel E., Osztheimer I., Ozturk A., Gellér L., Ozcan E.E. Percutaneous right atrial pacemaker lead repositioning using a regular deflectable ablation catheter. Adv. Interv. Cardiol. 2016; 12 (2): 183–4. DOI: 10.5114/aic.2016.59374 39. Khan M.N., Joseph G., Khaykin Y., Ziada K.M., Wilkoff B.L. Delayed lead perforation: a disturbing trend. Pacing Clin. Electrophysiol. 2005; 28 (3): 251–3. DOI: 10.1111/j.1540-8159.2005.40003.x
  39. Refaat M.M., Hashash J.G., Shalaby A.A. Late perforation by cardiac implantable electronic device leads: clinical presentation, diagnostic clues, and management. Clin. Cardiol. 2010; 33 (8): 466–75. DOI: 10.1002/clc.20803
  40. Kotsakou M., Kioumis I., Lazaridis G., Pitsiou G., Lampaki S., Papaiwannou A. et al. Pacemaker insertion. Ann. Transl. Med. 2015; 3 (3): 42. DOI: 10.3978/j.issn.2305-5839.2015.02.06
  41. Piekarz J., Lelakowski J., Rydlewska A., Majewski J. Heart perforation in patients with permanent cardiac pacing – pilot personal observations. Arch. Med. Sci. 2012; 8 (1): 70–4. DOI: 10.5114/aoms.2012.27284 43. Oda T., Kono T., Akaiwa K., Takahara Y., Yasuoka C., Nakamura K. Surgical repair of subacute right ventricular perforation after pacemaker implantation. Case Rep. Cardiol. 2017; 2017: 3242891. DOI: 10.1155/2017/3242891
  42. Verevetinov A.N., Tarsyuk E.S., Dorovskikh I.E., Vakhnenko Yu.V., Nikitin V.N., Urazova G.E. et al. Clinical case of late asymptomatic right ventricular perforation when implanted with a permanent pacemaker. Circulation Pathology and Cardiac Surgery. 2019; 23 (4): 91–7 (in Russ.). DOI: 10.21688/1681-3472-2019-4-91-97
  43. Banaszewski M., Ste,pińska J. Right heart perforation by pacemaker leads. Arch. Med. Sci. 2012; 8 (1): 11–3. DOI: 10.5114/aoms.2012.27273
  44. Amara W., Cymbalista M., Sergent J. Delayed right ventricular perforation with a pacemaker lead into subcutaneous tissues. Arch. Cardiovasc. Dis. 2010; 103 (1): 53–4. DOI: 10.1016/j.acvd.2008.06.008
  45. Polewczyk A., Kutarski A., Tomaszewski A., Polewczyk M., Janion M. Late complications of electrotherapy – a clinical analysis of indications for transvenous removal of endocardial leads: a single centre experience. Kardiol. Pol. 2013; 71 (4): 366–72. DOI: 10.5603/KP.2013.0064
  46. Nayeri A.N., Pavri B.B. Abrupt increase in impedance measurements as detected via remote monitoring: what is the cause? HeartRhythm Case Rep. 2015; 1 (2): 51–3. DOI: 10.1016/j.hrcr. 2014.12.001
  47. Adelstein E., Zhang L., Nazeer H., Loka A., Steckman D. Increased incidence of electrical abnormalities in a pacemaker lead family. J. Cardiovasc. Electrophysiol. 2021; 32 (4): 1111–21. DOI: 10.1111/jce.14941
  48. Chabin X., Taghli-Lamallem O., Mulliez A., Bordachar P., Jean F., Futier E. Bioimpedance analysis is safe in patients with implanted cardiac electronic devices. Clin. Nutr. 2019; 38 (2): 806–11. DOI: 10.1016/j.clnu.2018.02.029
  49. St.Jude Medical Company. Introduction to Autocapture. Pacesetter AB A -S171 95 SOLNA. Sweden. Ordering No. 63 22 536 E508E. P. 9.
  50. Barold S.S., Herweg B. The effect of hyperkalaemia on cardiac rhythm devices. Europace. 2014; 16 (4): 467–76. DOI: 10.1093/europace/eut383
  51. Osmolovsky A.N. Temporary transvenous endocardial pacing: method of endocardial electrode reposition in the right ventricular cavity of the heart. Kazan Medical Journal. 2016; 97 (3): 453–7 (in Russ.). DOI: 10.17750/KMJ2016-453
  52. Amit G., Wang J., Connolly S.J., Glikson M., Hohnloser S., Wright D.J. et al. Apical versus nonapical lead: is ICD lead position important for successful defibrillation? J. Cardiovasc. Electrophysiol. 2016; 27 (5): 581–6. DOI: 10.1111/jce.12952
  53. Pang B.J., Joshi S.B., Lui E.H., Tacey M.A., Ling L.H., Alison J. et al. Validation of conventional fluoroscopic and ECG criteria for right ventricular pacemaker lead position using cardiac computed tomography. Pacing Clin. Electrophysiol. 2014; 37 (4): 495–504. DOI: 10.1111/pace.12301
  54. Sabbagh E., Abdelfattah T., Karim M.M., Farah A., Grubb B., Karim S. Causes of failure to capture in pacemakers and implantable cardioverter-defibrillators. J. Innov. Card. Rhythm. Manag. 2020; 11 (2): 4013–7. DOI: 10.19102/icrm.2020.110207
  55. Martínez-Losas P., Higueras J., Gómez-Polo J.C., Brabyn P., Ferrer J.M., Can~adas V. et al. The influence of computerized interpretation of an electrocardiogram reading. Am. J. Emerg. Med. 2016; 34 (10): 2031–2. DOI: 10.1016/j.ajem.2016.07.029
  56. Higueras J., Olmos C., Palacios-Rubio J., GómezPolo J.C., Martínez-Losas P., Ruiz-Pizarro V. et al. TBC: a simple algorithm to rule out abnormalities in electrocardiograms of patients with pacemakers. Cardiol. J. 2018; 27 (2): 136–41. DOI: 10.5603/CJ.a2018.007

About Authors

  • Samatbek O. Kadyraliev, Postgraduate; ORCID
  • Vladislav Yu. Baranovich, Cand. Med. Sci., Associate Professor; ORCID
  • Aleksandr G. Faybushevich, Cand. Med. Sci., Associate Professor, Chief of Chair; ORCID
  • Daniil A. Maksimkin, Cand. Med. Sci., Associate Professor; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery