Relationship of genetic markers of inflammatory reaction with adverse results of percutaneous coronary interventions
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Original articles
DOI:
For citation: Buziashvili Yu.I., Koksheneva I.V., Petrosian K.V., Zakaraya I.T., Shuvaev I.P., Alimov V.P. Relationship of genetic markers of inflammatory reaction with adverse results of percutaneous coronary interventions. Creative Cardiology. 2023; 17 (1): 94–113 (in Russ.). DOI: 10.24022/1997-3187-2023-17-1-94-113
Received / Accepted: 27.09.2022 / 29.03.2023
Keywords: atherosclerosis percutaneous coronary interventions CCR5 chemokine receptor genetic polymorphism matrix metalloproteinase-3 genetic polymorphism risk of adverse PCI outcomes
Abstract
Objective. To study the effect of the carriage of genetic variants of the inflammatory response on the clinical results of percutaneous coronary interventions (PCI) in the early and mid-term periods.
Material and methods. The influence analyzed of 14 single nucleotide polymorphisms (SNPs) of 10 candidate genes involved in the regulation of inflammatory reactions (CRP (rs1417938, rs1800947, rs1130864), TNF (rs385064), Limphotoxin-α (rs1800797), p22 (phox) (rs4673), Stromelysin – 1 (rs3025058), P-selectin (rs3093030), LTA4H (rs2660899), CCRL2 (rs6971599), CCR2 (rs2227010), CCR5 (rs746492, rs1799988, rs 2097285) on PCI results in early and mid-term follow-up. included 84 patients with coronary artery disease who underwent planned PCI. At the beginning of the observation, the average age of patients was 59.2 ± 2.1 years. The average follow-up period was 6.15 ± 0.2 years.
Results. In the early follow-up period, 4 patients (on average after 19,5 ± 4,3 days) developed stent thrombosis, which required emergency coronary angiography and repeated stenting procedure. Carriage of the C allele of SNP of the stromelysin-1 gene (Stromelysin-1 rs3025058) was found to be associated with the risk of stent thrombosis in the early period after PCI (χ2= 9.57, p = 0.009; OR = 9.3, 95% CI: 1.12–77, one). The development of adverse cardiovascular events in the mid-term follow-up, such as the return of angina pectoris; development of myocardial infarction after PCI (during the follow-up period after discharge), angiographically confirmed restenosis/thrombosis of the stent, or progression of atherosclerosis in segments of the coronary vessels outside the stenting zone, cardiovascular death was observed in 39 patients. Carriage of the CC genotype of the chemokine receptor gene CCR5 (rs746492) was found to be associated with the risk of developing adverse cardiovascular events in the medium-term after PCI (χ2= 7.1, p = 0.03; OR = 3.55, 95% CI: 1, 31–9.57).
Conclusion. The results obtained indicate that the activation of inflammatory processes associated with the carriage of genetic variants of the genes of the chemokine receptor CCR5 (rs746492) and stromelysin-1 (rs3025058) is associated with adverse vascular complications in the early and mid-term after planned PCI.
References
- Taleb S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis. 2016; 109 (12): 708–15. DOI: 10.1016/j.acvd.2016.04.002
- Bäck M., Yurdagul A. Jr., Tabas I., Öörni K., Kovanen P.T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019; 16 (7): 389–406. DOI: 10.1038/s41569-019-0169-2
- Ruparelia N., Choudhury R. Inflammation and atherosclerosis: what is on the horizon? Heart. 2020; 106 (1): 80–5. DOI: 10.1136/heartjnl-2018- 14230
- Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 2021; 117 (13): 2525–36. DOI: 10.1093/cvr/cvab303
- Libby P. Inflammation in atherosclerosis – no longer a theory. Clin. Chem. 2021; 8; 67 (1): 131–42. DOI: 10.1093/clinchem/hvaa275
- Ishida Y., Kimura A., Kuninaka Y., Inui M., Matsushima K., Mukaida N. et al. Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J. Clin. Invest. 2012; 122 (2): 711–21. DOI: 10.1172/JCI43027
- Suffee N., Hlawaty H., Meddahi-Pelle A., Maillard L., Louedec L., Haddad O. et al. RANTES/CCL5-induced pro-angiogenic effects depend on CCR1, CCR5 and glycosaminoglycans. Angiogenesis. 2012; 15 (4): 727–44. DOI: 10.1007/s10456-012-9285-x
- Zhang Z., Liu J., Wang H., Wu H., Wu X., Dong J. et al. Association between chemokine receptor 5 (CCR5) delta32 gene variant and atherosclerosis: a meta-analysis of 13 studies. Int. J. Clin. Exp. Med. 2015; 8: 658–65.
- Zhang Z., Wang Q., Yao J., Zhou X., Zhao J., Zhang X. et al. Chemokine receptor 5, a doubleedged sword in metabolic syndrome and cardiovascular disease. Front. Pharmacol. 2020; 11 (146): 4–10. DOI: 10.3389/fphar.2020.00146
- Berger E.A., Murphy P.M., Farber J.M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 1999; 17: 657–700. DOI: 10.1146/annurev.immunol.17.1.657
- Kohlmeier J.E., Reiley W.W., Perona-Wright G., Freeman M.L., Yager E.J., Connor L.M. et al. Inflammatory chemokine receptors regulate CD8(+) T cell contraction and memory generation following infection. J. Exp. Med. 2011; 208 (8): 1621–34. DOI: 10.1084/jem.20102110
- Montecucco F., Steffens S., Burger F., Da Costa A., Bianchi G., Bertolotto M. et al. Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1alpha) on human neutrophils through defined signalling pathways. Cell. Signal. 2008; 20 (3): 557–68. DOI: 10.1016/j.cellsig.2007.11.008
- Mirabelli-Badenier M., Braunersreuther V., Viviani G.L., Dallegri F., Quercioli A., Veneselli E. et al. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb. Haemost. 2011; 105 (3): 409–20. DOI: 10.1160/TH10-10-0662
- Appay V., Rowland-Jones S.L. RANTES: a versatile and controversial chemokine. Trends. Immunol. 2001; 22 (2): 83–7. DOI: 10.1016/s1471-4906 (00)01812-3
- Ridiandries A., Tan J.T., Bursill C.A. The role of CC-chemokines in the regulation of angiogenesis. Int. J. Mol. Sci. 2016; 8; 17 (11): 1856. DOI: 10.3390/ijms17111856
- Potteaux S., Combadière C., Esposito B., Lecureuil C., Ait-Oufella H., Merval R. et al. Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler. Thromb. Vasc. Biol. 2006; 26 (8): 1858–63. DOI: 10.1161/01.ATV.0000231527.22762.71
- Bjerregaard T., Krogh Nielsen M., Molbech C.R., Subhi Y., Sørensen T.L.Treatment failure in neovascular age-related macular degeneration is associated with a complex chemokine receptor profile. BMJ Open. Ophthalmol. 2019; 4 (1): e000307. DOI: 10.1136/bmjophth-2019-000307
- Yan D., Zhang D., Lu L., Qiu H., Wang J. Vascular endothelial growth factor-modified macrophages accelerate reendothelialization and attenuate neointima formation after arterial injury in atherosclerosis-prone mice. J. Cell. Biochem. 2019; 120 (6): 10652–61. DOI: 10.1002/jcb.28355
- Suffee N., Le Visage C., Hlawaty H., Aid-Launais R., Vanneaux V., Larghero J. et al. Pro-angiogenic effect of RANTES-loaded polysaccharidebased microparticles for a mouse ischemia therapy. Sci. Rep. 2017; 7 (1): 13294. DOI: 10.1038/s41598-017-13444-7
- Andersen T., Ueland T., Ghukasyan L.T., Akerblom A., Bertilsson M., Aukrust P. et al. C-X-C ligand 16 is an independent predictor of cardiovascular death and morbidity in acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol. 2019; 39: 2402–10. DOI: 10.1161/ATVBAHA.119.312633
- Van der Vorst E., Peters L., Muller M., Gencer S., Yan Y., Weber C. et al. G-protein coupled receptor targeting on myeloid cells in atherosclerosis. Front. Pharmacol. 2019; 10: 531. DOI: 10.3389/fphar. 2019.00531
- Afzal A.R., Kiechl S., Daryani Y.P.,Weerasinghe A., Zhang Y., Reindl M. et al. Common CCR5- del32 frameshift mutation associated with serum levels of inflammatory markers and cardiovascular disease risk in the Bruneck population. Stroke. 2008; 3: 1972–8. DOI: 10.1161/STROKEAHA.107
- Gleissner C.A., von Hundelshausen P., Ley K. Platelet chemokines in vascular disease. Arterioscler. Thromb. Vasc. Biol. 2008; 28: 1920–7. DOI: 10.1161/ATVBAHA.108.169417
- Soehnlein O., Drechsler M., Doring Y., Lievens D., Hartwig H., Kemmerich K. et al. Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO. Mol. Med. 2013; 5: 471–81. DOI: 10.1002/emmm.201201717
- Braunersreuther V., Zernecke A., Arnaud C., Liehn E.A., Steffens S., Shagdarsuren E. et al. CCCR5 but not CCR1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 373–9. DOI: 10.1161/01.ATV.0000253886.44609.ae
- Veillard N.R., Kwak B., Pell G., Mulhaupt F., James R.W., Proudfoot A.E. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ. Res. 2004; 94: 253–61. DOI: 10.1161/01.RES.0000109793.17591.4E
- Braunersreuther V., Steffens S., Arnaud C., Pelli G., Burger F., Proudfoot A. et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler. Thromb. Vasc. Biol. 2008; 28: 1090–6. DOI: 10.1161/ATVBAHA.108.165423
- Czepluch F.S., Meier J., Binder C., Hasenfuss G., Schäfer K. CCL5 deficiency reduces neointima formation following arterial injury and thrombosis in apolipoprotein E-deficient mice. Thromb. Res. 2016; 144: 136–43. DOI: 10.1016/j.thromres.2016.06.013
- Francisci D., Pirro M., Schiaroli E., Mannarino M.R., Cipriani S., Bianconi V. et al. Maraviroc intensification modulates atherosclerotic progression in HIV-suppressed patients at high cardiovascular risk. A randomized, crossover pilot study. Open. Forum. Infect. Dis. 2019; 6 (4): 112. DOI: 10.1093/ofid/ofz112
- Simeoni E., Winkelmann B.R., Hoffmann M.M., Fleury S., Ruiz J., Kappenberger L. et al. Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur. Heart J. 2004; 25 (16): 1438–46. DOI: 10.1016/j.ehj.2004.05.005
- Vogiatzi K., Voudris V., Apostolakis S., Kochiadakis G.E., Thomopoulou S., Zaravinos A., Spandidos D.A. Genetic diversity of RANTES gene promoter and susceptibility to coronary artery disease and restenosis after percutaneous coronary intervention. Thromb. Res. 2009; 124 (1): 84–9. DOI: 10.1016/j.thromres.2008.12.043
- Ting K.H., Ueng K.C., Chiang W.L., Chou Y.E., Yang S.F., Wang P.H. Relationship of genetic polymorphisms of the chemokine, CCL5, and its receptor, CCR5, with coronary artery disease in Taiwan. Evid. Based. Complement. Alternat. Med. 2015; 851683. DOI: 10.1155/2015/851683.
- Van der Vorst E., Döring Y., Weber Ch. Chemokines and their receptors in atherosclerosis. J. Mol. Med. 2015; 93: 963–71. DOI: 10.1007/s00109- 015-1317-8
- Abilleira S., Bevan S., Markus H.S. The role of genetic variants of matrix metalloproteinases in 112 Creative Cardiology. 2023; 17 (1) DOI: 10.24022/1997-3187-2023-17-1-94-113 Original articles coronary and carotid atherosclerosis. J. Med. Genet. 2006; 43 (12): 897–901. DOI: 10.1136/jmg.2006.040808
- Phatharajaree W., Phrommintikul A., Chattipakorn N. Matrix metalloproteinases and myocardial infarction. Can. J. Cardiol. 2007; 23 (9): 727–33. DOI: 10.1016/s0828-282x(07)70818-8
- Pawlik A., Plucinska M., Kopec M., Głabowski D., Czerewaty M., Safranow K. MMP1 and MMP3 gene polymorphisms in patients with acute coronary syndromes. IUBMB Life. 2017; 69 (11): 850–5. DOI: 10.1002/iub.1684
- Xu X., Wang L., Xu C., Zhang P., Yong F., Liu H. et al. Variations in matrix metalloproteinase-1, -3, and -9 genes and the risk of acute coronary syndrome and coronary artery disease in the Chinese Han population. Coron. Artery. Dis. 2013; 24 (4): 259–65. DOI: 10.1097/MCA.0b013e32835ea3af
- Huang X.Y., Han L.Y., Huang X.D., Guan C.H., Mao X.L., Ye Z.S. Association of matrix metalloproteinase-1 and matrix metalloproteinase-3 gene variants with ischemic stroke and its subtype. J. Stroke Cerebrovasc. Dis. 2017; 26 (2): 368–75. DOI: 10.1016/j.jstrokecerebrovasdis. 2016.09.034
- Pleskovič A.., Letonja M.Š., Vujkovac A.C., Starčević J.N., Caprnda M., Curilla E. et al. Matrix metalloproteinase-3 gene polymorphism (rs3025058) affects markers atherosclerosis in type 2 diabetes mellitus. Vasa. 2017; 46 (5): 363–9. DOI: 10.1024/0301-1526/a000637
- Du J., Liu Y., Gao J., Chen S., Jiang H., Zhao L., Cong H. Association of MMP3 promoter 5A/6A polymorphism with stability of extracellular matrix of atherosclerotic plaque. Zhonghua. Yi. Xue. Yi. Chuan. Xue. Za. Zhi. 2019; 36 (6): 645–8. DOI: 10.3760/cma.j.issn.1003-9406.2019.06.029
- van Varik B.J., Rennenberg R.J.M.W., Reutelingsperger Ch.P., Kroon A.A., de Leeuw P.W., Schurgers L.J. Mechanisms of arterial remodeling: lessons from genetic diseases. Front. Genet. 2012; 3: 290. DOI: 10.3389/fgene.2012.00290
- Mohan J., Bhatti K., Tawney A., Zeltser R. Coronary artery calcification. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
- Drapkina O.M., Kaburova A.N. Vascular stiffness and diastolic heart failure. Therapeutic archive. 2013; 11: 75–81 (in Russ.).
- Johnson J.L. Metalloproteinases in atherosclerosis. Eur. J. Pharmacol. 2017; 816 (5): 93–106. DOI: 10.1016/j.ejphar.2017.09.007
About Authors
- Yurij I. Buziashvili, Dr. Med. Sci., Professor, Academician of the Russian Academy of Sciences, Head of the clinical diagnostic department; ORCID
- Inna V. Koksheneva, Dr. Med. Sci., Senior Researcher; ORCID
- Karen V. Petrosian, Dr. Med. Sci., Professor, Head of the Department; ORCID
- Irakliy T. Zakaraya, Junior Researcher;
- Igor P. Shuvaev, Cand. Med. Sci., Cardiologist; ORCID
- Viktor P. Alimov, Junior Researcher; ORCID