Modern views on the regulationof platelet-dependent hemostasis

Authors: Sveshnikova A.N.1–3, Yakusheva A.A.1–3, Ryabykh A.A.1, 3, Ushakova O.E.1,2, 2, Abaeva A.A.1,2, 2, Obydennyy S.I.1, Nechipurenko D.Yu.1–3, Panteleev M.A.1–3

Company: 1 Dmitry Rogachev National Research Center for Paediatric Hematology, Immunology and Oncology, of Ministry of Health of the Russian Federation, ulitsa Samory Mashela, 1, Moscow, 117997, Russian Federation;
2 Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, ulitsa Kosygina, 4, Moscow, 119991, Russian Federation;
3 M.V. Lomonosov Moscow State University, Faculty of Physics, mikrorayon Leninskie Gory, 1, stroenie 2, Moscow, 119991, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


For citation: Sveshnikova A.N., Yakusheva A.A., Ryabykh A.A., Ushakova O.E., Abaeva A.A., Obydennyy S.I., Nechipurenko D.Yu., Panteleev M.A. Modern views on the regulation of platelet-dependent hemostasis. Creative Cardiology. 2018; 12 (3): 260–74 (in Russ.). DOI: 10.24022/1997-3187-2018-12-3-260-274

Received / Accepted:  19.07.2018/09.08.2018

Keywords: hemostasis thrombosis platelets cell signal transduction integral assays of hemostasis

Full text:  



Platelets are non-nuclear cellular fragments of blood, whose main task is to stop bleeding by forming aggregates. Despite the relatively simple task, their organization is very complex. They have an almost complete set of organelles and other components, including endoplasmic reticulum, mitochondria, glycogen, actin and tubulin cytoskeleton and myosin contractile mechanisms. When activated, platelets secrete a variety of granules and interact with plasma proteins and blood cells and other tissues; their activation is controlled by more than one hundred receptors and complex signal cascades. In recent years, new key mechanisms for the functioning of platelets have been identified, which led to a significant revision of the concept of the regulation of the hemostatic response, pathological thrombosis and other functions of platelets. The most significant new views include: heterogeneity of thrombi and hemostatic aggregates, the role of platelets in maintaining vascular integrity, the formation of procoagulant platelets upon activation due to a new type of cell death, the new role of platelets in immunity and tissue development, activation of platelet contact during arterial thrombosis and others. These advances serve as a basis for the development of new methods of diagnosis and therapy.


  1. Stalker T.J., Traxler E.A., Wu J., Wannemacher K.M., Cermignano S.L., Voronov R. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood. 2013; 121 (10): 1875–85. DОI: 10.1182/blood-2012-09-457739.
  2. Abaeva A.A., Canault M., Kotova Y.N., Obydennyy S.I., Yakimenko A.O., Podoplelova N.A. et al. Procoagulant platelets form an alpha-granule protein-covered ”cap” on their surface that promotes their attachment to aggregates. J. Biol. Chem. 2013; 288 (41): 29621–32. DОI: 10.1074/jbc.M113.474163.
  3. Podoplelova N.A., Sveshnikova A.N., Kotova Y.N., Eckly A., Receveur N., Nechipurenko D.Y. et al. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood. 2016; 128 (13): 1745–55. DОI:10.1182/blood-2016-02-696898.
  4. Goerge T., Ho-Tin-Noe B., Carbo C., Benarafa C., Remold-O'Donnell E., Zhao B.Q. et al. Inflammation induces hemorrhage in thrombocytopenia. Blood. 2008; 111 (10): 4958–64. DОI: 10.1182/blood-2007-11-123620.
  5. Osada M., Inoue O., Ding G., Shirai T., Ichise H., Hirayama K. et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J. Biol. Chem. 2012; 287 (26): 22241–52. DОI:10.1074/jbc.M111.329987.
  6. White J.G. Electron microscopy methods for studying platelet structure and function. Methods Mol. Biol. 2004; 272: 47–63. DОI: 10.1385/1-59259-782-3:047.
  7. Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 2005; 3 (11): 2545–53. DОI: 10.1111/j.1538-7836.2005.01616.x.
  8. Sveshnikova A.N., Balatskiy A.V., Demianova A.S., Shepelyuk T.O., Shakhidzhanov S.S., Balatskaya M.N. et al. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling. J. Thromb. Haemost. 2016; 14 (10): 2045–57. DОI: 10.1111/jth.13442.
  9. Balabin F.A., Sveshnikova A.N. Computational biology analysis of platelet signaling reveals roles of feedbacks through phospholipase C and inositol 1,4,5-trisphosphate 3-kinase in controlling amplitude and duration of calcium oscillations. Math. Biosci. 2016; 276: 67–74. DОI: 10.1016/j.mbs.2016.03.006.
  10. Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol. Biosyst. 2015; 11 (4): 1052–60. DОI: 10.1039/c4mb00667d.
  11. Obydennyy S.I., Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J. Thromb. Haemost. 2016; 14 (9): 1867–81. DОI: 10.1111/jth.13395.
  12. Belyaev A.V., Panteleev M.A., Ataullakhanov F.I. Threshold of microvascular occlusion: injury size defines the thrombosis scenario. Biophys J. 2015; 109 (2): 450–6. DОI: 10.1016/j.bpj.2015.06.019.
  13. Nieswandt B., Brakebusch C., Bergmeier W., Schulte V., Bouvard D., Mokhtari-Nejad R. et al. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J. 2001; 20 (9): 2120–30. DОI: 10.1093/emboj/20.9.2120.
  14. Lipets E., Vlasova O., Urnova E., Margolin O., Soloveva A., Ostapushchenko O. et al. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One. 2014; 9 (1): e87692. DОI:10.1371/journal.pone.0087692.
  15. Hagedorn I., Schmidbauer S., Pleines I., Kleinschnitz C., Kronthaler U., Stoll G. et al. Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation. 2010; 121 (13): 1510–7. DОI: 10.1161/CIRCULATIONAHA.109.924761.
  16. Muller F., Mutch N.J., Schenk W.A., Smith S.A., Esterl L., Spronk H.M. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009; 139 (6): 1143–56. DОI: 10.1016/j.cell.2009.11.001.
  17. Kenne E., Nickel K.F., Long A.T., Fuchs T.A., Stavrou E.X., Stahl F.R. et al. Factor XII: a novel target for safe prevention of thrombosis and inflammation. J. Intern. Med. 2015; 278 (6): 571–85. DОI: 10.1111/joim.12430.
  18. Faxalv L., Boknas N., Strom J.O., Tengvall P., Theodorsson E., Ramstrom S. et al. Putting polyphosphates to the test: evidence against platelet-induced activation of factor XII. Blood. 2013; 122 (23): 3818–24. DОI: 10.1182/blood-2013-05-499384.
  19. Smith S.A., Choi S.H., Davis-Harrison R., Huyck J., Boettcher J., Rienstra C.M. et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood. 2010; 116 (20): 4353–9. DОI: 10.1182/blood-2010-01-266791.
  20. Zakharova N.V., Artemenko E.O., Podoplelova N.A., Sveshnikova A.N., Demina I.A., Ataullakhanov F.I. et al. Platelet surface-associated activation and secretion-mediated inhibition of coagulation factor XII. PLoS One. 2015; 10 (2): e0116665. DОI: 10.1371/journal.pone.0116665.
  21. Alberio L., Safa O., Clemetson K.J., Esmon C.T., Dale G.L. Surface expression and functional characterization of alpha-granule factor V in human platelets: effects of ionophore A23187, thrombin, collagen, and convulxin. Blood. 2000; 95 (5): 1694–702.
  22. Dale G.L., Friese P., Batar P., Hamilton S.F., Reed G.L., Jackson K.W. et al. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature. 2002; 415 (6868): 175–9. DОI: 10.1038/415175a.
  23. Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. Formation of coated platelets is regulated by the dense granule secretion of adenosine 5'diphosphate acting via the P2Y12 receptor. J. Thromb. Haemost. 2008; 6 (9): 1603–5. DОI: 10.1111/j.1538-7836.2008.03052.x.
  24. Jobe S.M., Wilson K.M., Leo L., Raimondi A., Molkentin J.D., Lentz S.R. et al. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood. 2008; 111 (3): 1257–65. DОI: 10.1182/blood-2007-05-092684.
  25. Shakhidzhanov S.S., Shaturny V.I., Panteleev M.A., Sveshnikova A.N. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim. Biophys. Acta. 2015; 1850 (12): 2518–29. DОI: 10.1016/j.bbagen.2015.09.013.
  26. Topalov N.N., Kotova Y.N., Vasil'ev S.A., Panteleev M.A. Identification of signal transduction pathways involved in the formation of platelet subpopulations upon activation. Br. J. Haematol. 2012; 157 (1): 105–15. DОI: 10.1111/j.1365-2141.2011.09021.x.
  27. Topalov N.N., Yakimenko A.O., Canault M., Artemenko E.O., Zakharova N.V., Abaeva A.A. et al. Two types of procoagulant platelets are formed upon physiological activation and are controlled by integrin alpha(IIb)beta(3). Arterioscler. Thromb. Vasc. Biol. 2012; 32 (10): 2475–83. DОI:10.1161/ATVBAHA.112.253765.
  28. Artemenko E.O., Yakimenko A.O., Pichugin A.V., Ataullakhanov F.I., Panteleev M.A. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets. Biochem J. 2016; 473 (4): 435–48. DОI:10.1042/BJ20150779.
  29. Yakimenko A.O., Verholomova F.Y., Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys J. 2012; 102 (10): 2261–9. DОI: 10.1016/j.bpj.2012.04.004.
  30. Kirkpatrick A.C., Tafur A.J., Vincent A.S., Dale G.L., Prodan C.I. Coated-platelets improve prediction of stroke and transient ischemic attack in asymptomatic internal carotid artery stenosis. Stroke. 2014; 45 (10): 2995–3001. DОI:10.1161/STROKEAHA.114.006492.
  31. Daskalakis M., Colucci G., Keller P., Rochat S., Silzle T., Biasiutti F.D. et al. Decreased generation of procoagulant platelets detected by flow cytometric analysis in patients with bleeding diathesis. Cytometry B. Clin. Cytom. 2014; 86 (6): 397–409. DОI: 10.1002/cyto.b.21157.
  32. Kimball A.S., Obi A.T., Diaz J.A., Henke P.K. The Emerging Role of NETs in Venous Thrombosis and Immunothrombosis. Front. Immunol. 2016; 7: 236. DОI: 10.3389/fimmu.2016.00236.
  33. Brill A., Fuchs T.A., Savchenko A.S., Thomas G.M., Martinod K., De Meyer S.F. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 2012; 10 (1): 136–44. DОI: 10.1111/j.1538-7836.2011.04544.x.
  34. Savchenko A.S., Martinod K., Seidman M.A., Wong S.L., Borissoff J.I., Piazza G. et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J. Thromb. Haemost. 2014; 12 (6): 860–70. DОI:10.1111/jth.12571.
  35. Von Bruhl M.L., Stark K., Steinhart A., Chandraratne S., Konrad I., Lorenz M. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012; 209 (4): 819–35. DОI:10.1084/jem.20112322.
  36. Diaz J.A., Wrobleski S.K., Alvarado C.M., Hawley A.E., Doornbos N.K., Lester P.A. et al. P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor. Arterioscler. Thromb. Vasc. Biol. 2015; 35 (4): 829–37. DОI: 10.1161/ATVBAHA.114.304457.
  37. Alshehri O.M., Hughes C.E., Montague S., Watson S.K., Frampton J., Bender M. et al. Fibrin activates GPVI in human and mouse platelets. Blood. 2015; 126 (13): 1601–8. DОI: 10.1182/blood-2015-04-641654.
  38. Mammadova-Bach E., Ollivier V., Loyau S., Schaff M., Dumont B., Favier R. et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 2015; 126 (5): 683–91. DОI: 10.1182/blood-2015-02-629717.
  39. Nurhayati R.W., Ojima Y., Taya M. Recent developments in ex vivo platelet production. Cytotechnology. 2016: 68 (6): 2211–21. DОI: 10.1007/s10616-016-9963-4.
  40. Firkin B.G., Arimura G., Harrington W.J. A method for evaluating the hemostatic effect of various agents in thrombocytopenic rats and mie. Blood. 1960; 15 388–94.
  41. Fischer T.H., Merricks E.P., Bode A.P., Bellinger D.A., Russell K., Reddick R. et al. Thrombus formation with rehydrated, lyophilized platelets. Hematology. 2002; 7 (6): 359–69. DОI:10.1080/1024533021000047954.
  42. RTP's Entegrion awarded $7.8M to develop freezedried platelets. news/business/article10094855.html (дата обра- щения 20.10.2017 / accessed October 20, 2017).
  43. Mohanty D. Current concepts in platelet transfusion. Asian J. Transfus. Sci. 2009; 3 (1): 18–21. DОI: 10.4103/0973-6247.45257.

About Authors

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery