Echocardiographic features of COVID-19 patients without significant baseline cardiovascular disease

Authors: Yakovlev S.A., Dukhin O.A., Kalinskaya A.I., Ryzhkova E.V., Andreeva E.V., Lebedeva A.Yu., Vasilieva E.Yu., Shpektor A.V.

Company: 1 Davydovskiy City Clinical Hospital of Moscow Department of Health, Moscow, Russian Federation
2 Department of Cardiology of Moscow State University of Medicine and Dentistry named after A.I. Evdokimov of Ministry of Health of the Russian Federation, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2021-15-3-367-376

For citation: Yakovlev S.A., Dukhin O.A., Kalinskaya A.I., Ryzhkova E.V., Andreeva E.V., Lebedeva A.Yu., Vasilieva E.Yu., Shpektor A.V. Echocardiographic features of COVID-19 patients without significant baseline cardiovascular disease. Creative Cardiology. 2021; 15 (3): 367–76 (in Russ.). DOI: 10.24022/1997-3187-2021-15-3-367-376

Received / Accepted:  28.07.2021 / 25.08.2021

Keywords: COVID-19 echocardiography global longitudinal strain

Full text:  

 

Abstract

Objective. To assess the relationship between the severity of COVID-19 in patients without significant baseline cardiovascular pathology and various echocardiographic parameters of myocardial dysfunction.

Material and methods. 46 patients with COVID-19 were included in our study: 33 patients of moderate severity and 13 – with severe disease. On days 1 and 9 upon admission, all patients underwent an echocardiographic study with standard assessment of the both ventricles function, as well as an assessment of their global longitudinal strain (GLS). Comparison of the studied parameters was carried out both between groups of patients and within each group in dynamics.

Results. On day 1patients in the severe group had higher values of the systolic gradient on the tricuspid valve (22.0 [21.0; 26.0] vs 30.0 [24.0; 34.5] mm Hg, p = 0.02), systolic excursion of the plane of the tricuspid ring (2.3 [2.1; 2.4] vs 2.0 [1.9; 2.2] mm, p = 0.016), E/e' ratio (9.5 [7.7; 8.9] vs 7.5 [6.8; 9.3], p = 0.03). At day 9 among patients in the severe group, there was a decrease in end-diastolic (111.0 [100.0; 120.0] vs 100.0 [89.0; 105.0] ml, p = 0.03) and of end-systolic (35.5 [32.0; 41, 2] vs 28.0 [25.0; 31.8] ml, p < 0.01) volumes of the left ventricle. There was a decrease in GLS of the both ventricles compared to general accepted values. In dynamics, there was an increase in the GLS of the right ventricle in both groups, but it was more pronounced among severe group of patients (day 1 –18.5 [–15.2; –21.1] vs –20.2 [–15.8.1; –21.1] %, p = 0.03). The troponin levels were in the normal range.

Conclusion. In COVID-19 patients without significant baseline cardiovascular pathology, there is a transient decrease in longitudinal strain of both ventricles, even in the absence of clinical and laboratory signs of acute myocardial injury.

References

  1. Gattinoni L., Chiumello D., Caironi P., Busana M., Romitti F., Brazzi L. et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Int. Care Med. 2020; 46: 1099–102. DOI: 10.1007/s00134-020-06033-2
  2. Maev I., Shpektor A., Vasilyeva E., Manchurov V., Andreev D. Novel coronavirus infection COVID-19: extrapulmonary manifestations. Ter. Arkh. 2020; 92: 4–11. DOI: 10.26442/00403660.2020.08.000767
  3. Adukia S., Ruhatiya R., Maheshwarappa H., Manjunath R.B., Jain G.N. Extrapulmonary features of COVID-19: a concise review. Indi. J. Crit. Care Med. 2020; 24: 575–80. DOI: 10.5005/jp-journals10071-23476
  4. Nishiga M., Wang D., Han Y., Lewis D., Wu J. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020; 17: 543–58. DOI: 10.5005/jp-journals-10071-23476
  5. Tajbakhsh A., Gheibi H., Taghizadeh H., Akbari A., Inabadi M., Savardashtaki A. et al. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev. Anti. Infect. Ther. 2021; 19: 345–57. DOI: 10.1080/14787210.2020.1822737
  6. Siripanthong B., Nazarian S., Muser D., Deo R., Santangeli P., Khanji M. et al. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Hear Rhythm. 2020; 17: 1463–71. DOI: 10.1016/j.hrthm.2020.05.001
  7. Castiello T., Georgiopoulos G., Finocchiaro G., Gherardo C., Monaco G., Delialis A. et al. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Fail. Rev. 2021; 1-1. DOI: 10.1007/s10741-021-10087-9
  8. Chen B., Shi N., Wu C., An D., Shi Y., Wesemann L. et al. Early cardiac involvement in patients with acute COVID-19 infection identified by multiparametric cardiovascular magnetic resonance imaging. Eur. Hear J. Cardiovasc. Imaging. 2021. DOI: 10.1093/ehjci/jeab042
  9. Inciardi R., Lupi L., Zaccone G., Italia L., Raffo M., Tomasoni D. et al. Cardiac Involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (7): 819–24. DOI: 10.1001/jamacardio.2020.1096
  10. Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F. et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5 (7): 802–10. DOI: 10.1001/jamacardio.2020.0950
  11. Deng Q., Hu B., Zhang Y., Wang H., Zhou X., Hu W. et al. Suspected myocardial injury in patients with COVID-19: evidence from front-line clinical observation in Wuhan, China. Int. J. Cardiol. 2020; 311: 116–21. DOI: 10.1016/j.ijcard.2020.03.087
  12. Szekely Y., Lichter Y., Taieb P., Banai A., Hochstadt A., Merdler I. et al. The spectrum of cardiac manifestations in coronavirus disease 2019 (COVID-19) – a systematic echocardiographic study. Circulation. 2020; 142 (4): 342–53. DOI: 10.1161/circulationaha.120.047971
  13. Dweck M., Bularga A., Hahn R., Bing R., Lee K., Chapman A. et al. Global evaluation of echocardiography in patients with COVID-19. Eur. Heart J. Cardiovasc. Imaging. 2020; 21: 949–58. DOI: 10.1093/ehjci/jeaa178
  14. Potter E., Marwick T. Assessment of Left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc. Imaging. 2018; 11: 260–74. DOI: 10.1016/j.jcmg.2017.11.017
  15. Li Y., Li H., Zhu S., Xie Y., Wang B., He L. et al. Prognostic Value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc. Imaging. 2020; 13 (11): 2287–99. DOI: 10.1016/j.jcmg.2020.04.014
  16. Park J., Kim Y., Pereira J., Hennessey K., Faridi K., McNamara R. et al. Understanding the role of left and right ventricular strain assessment in patients hospitalized with COVID-19. Am. Heart J. Plus. Cardiol. Res. Pract. 2021; 100018. DOI: 10.1016/j.ahjo.2021.100018
  17. Badano L., Kolias T., Muraru D., Abraham T., Aurigemna G., Edvardsen T. et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (6): 591–600. DOI: 10.1093/ehjci/jey042
  18. Capotosto L., Nguyen B., Ciardi M., Mastroianni C., Vitarelli A. Heart, COVID-19, and echocardiography. Echocardiography. 2020; 37 (9): 1454–64. DOI: 10.1111/echo.14834
  19. Puntmann V., Carerj M., Wieters I., Fahim M., Arendt C., Hoffmann J. et al. Outcomes of Cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. 5 (11): 1265–73. DOI: 10.1001/jamacardio.2020.3557
  20. Aikawa T., Takagi H., Ishikawa K., Kuno T. Myocardial injury characterized by elevated cardiac troponin and in-hospital mortality of COVID-19: An insight from a meta-analysis. J. Med. Virol. 2021; 93 (1): 51–5. DOI: 10.1002/jmv.26108
  21. Giustino G., Pinney S., Lala A., Reddy V., Johnston-Cox H., Mechanick et al. Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC focus seminar. J. Am. Coll. Cardiol. 2020; 76 (17): 2011–23. DOI: 10.1016/j.jacc.2020.08.059
  22. Bernal-Torres W., Herrera-Escandón ′ A., HurtadoRivera M., Plata-Mosquera C., Savarese G., David S. et al. COVID-19 fulminant myocarditis: a case report. Eur. Hear J. Case Rep. 2020; 4 (FI1). DOI: 10.1093/ehjcr/ytaa212
  23. Craver R., Huber S., Sandomirsky M., McKenna D., Schieffelin J., Finger L. Fatal Eosinophilic myocarditis in a healthy 17-year-old male with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2c). Fetal Pediatr. Pathol. 2020; 39 (3): 263–8. DOI: 10.1080/15513815.2020.1761491
  24. Siripanthong B., Nazarian S., Muser D., Deo R., Santangeli P., Khanji M. et al. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Hear Rhythm. 2020; 17 (9): 1463–71. DOI: 10.1016/j.hrthm.2020.05.001
  25. orris D., Krisper M., Nakatani S., Kohncke C., Otsiji Y., Belyavskiy E. et al. Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. Eur. Heart J. Cardiovasc. Imaging. 2017; 18 (2): 212–23. DOI: 10.1093/ehjci/jew011
  26. Yingchoncharoen T., Agarwal S., Popović Z., Marwick T. Normal ranges of left ventricular strain: a meta-analysis. J. Am. Soc. Echocardiogr. 2013; 26 (2): 185–91. DOI: 10.1016/j.echo.2012.10.008
  27. Fahim O., Fawzi A., Beshay M., Yousif M. Study of the relation between speckle tracking echocardiography and BODE index in patients with chronic obstructive pulmonary disease. Egypt. J. Chest Dis. Tuberc. 2020; 69 (3): 524. DOI: 10.4103/ejcdt.ejcdt_168_19
  28. Namana V., Siddiqui S., Balasubramanian R., Sarasam R., Shetty V. Saddle pulmonary embolism: Right ventricular strain an indicator for early surgical approach. Oxford Med. Case Reports. 2016; 2016 (6): 130–4. DOI: 10.1093/omcr/omw045
  29. Fayssoil A., Mustafic H., Mansencal N. The right ventricle in COVID-19 patients. J. Clean. Prod. 2020; 130: 166. DOI: 10.1016/j.amjcard.2020.06.007
  30. Park J., Banerjee S., Umar S. In the eye of the storm: the right ventricle in COVID-19. Pulm. Circ. 2020; 10 (3): 1–7. DOI: 10.1177/2045894020936660
  31. Golukhova Е., Slivneva I., Rybka M., Mamalyga M., Marapov D., Klyuchnikov I. Right ventricular systolic dysfunction as a predictor of adverse outcome in patients with COVID-19. Kardiologia. 2020; 60 (11): 16–29. DOI: 10.18087/cardio.2020.11.n1303
  32. Minhas A., Scheel P., Garibaldi B., Liu G., Horton M., Jennings M. et al. Takotsubo syndrome in the setting of COVID-19. JACC Case Reports. 2020; 2 (9): 1321–5. DOI: 10.1016/j.jaccas.2020. 04.023
  33. Babapoor-Farrokhran S., Rasekhi R., Gill D., Babapoor S., Amanullah A. Arrhythmia in COVID-19. SN Compr. Clin. Med. 2020; 2 (9): 1–6. DOI: 10.1007/s42399-020-00454-2
  34. Gasso L., Maneiro M., Sarnago F., Solis J., Garcia Tejada J. Multivessel spontaneous coronary artery dissection presenting in a patient with severe acute SARS-CoV-2 respiratory infection. Eur. Heart J. 2020; 41 (32): 3100–1. DOI: 10.1093/eurheartj/ehaa400
  35. Hua A., O’Gallagher K., Sado D., Byrne J. Lifethreatening cardiac tamponade complicating myopericarditis in COVID-19. Eur. Heart J. 2020; 41 (22): 2130. DOI: 10.1093/eurheartj/ehaa253

About Authors

  • Sergey A. Yakovlev, Ultrasonic Diagnostics Physician; ORCID
  • Oleg A. Dukhin, Postgraduate; ORCID
  • Anna I. Kalinskaya, Associate Professor, Cand. Med. Sci., Head of Department; ORCID
  • Evgeniya V. Ryzhkova, Ultrasonic Diagnostics Physician; ORCID
  • El’za V. Andreeva, Ultrasonic Diagnostics Physician; ORCID
  • Anastasiya Yu. Lebedeva, Dr. Med. Sci., Professor, Deputy Chief Physician; ORCID
  • Elena Yu. Vasilieva, Dr. Med. Sci., Professor, Head of Laboratory, Chief Physician; ORCID
  • Aleksander V. Shpektor, Dr. Med. Sci., Professor, Corresponding Member of RAS, Chief of Chair, Head of the University Clinic of Cardiology; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery