Prognostic value of myocardial injury marker (stimulating growth factor ST2) in patients with acute coronary syndrome

Authors: Khoroshikh L.V., Khotsanyan C.V., Gromova O.I., Bulaeva N.I.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2021-15-4-468-481

For citation: Khoroshikh L.V., Khotsanyan C.V., Gromova O.I., Bulaeva N.I. Prognostic value of myocardial injury marker (stimulating growth factor ST2) in patients with acute coronary syndrome. Creative Cardiology. 2021; 15 (4): 468–81 (in Russ.). DOI: 10.24022/1997-3187-2021-15-4-468-481

Received / Accepted:  21.09.2021 / 02.12.2021

Keywords: acute coronary syndrome biomarkers of myocardial injury stimulating growth factor ST2

Full text:  

 

Abstract

Coronary artery disease is the most common manifestation of cardiovascular diseases and is associated with high rates of morbidity and mortality. Cardiovascular biomarkers play an important role in the diagnosis, risk stratification and treatment of patients with cardiovascular diseases and, in particular, patients with acute coronary syndrome and heart failure. In recent years, much attention has been paid to biomarkers as a means of obtaining the necessary prognostic and diagnostic information about a patient; many biomarkers have already established themselves as indicators of health status. Today, ST2 is one of the most promising biomarkers. The purpose of this review is to summarize current data to improve awareness of the importance of a marker of myocardial injury (stimulating growth factor ST2) in patients with acute coronary syndrome and to draw more attention to its importance.

References

  1. Golukhova E.Z. Diseases of the cardiovascular system – a pandemic of the modern era. Social significance and consequences. http://heart-master.com/clinic/cardiovascular_disease (accessed 08 September, 2021) (in Russ.).
  2. Gerasimov A.A. The impact of the introduction of clinical recommendations on cardiology in the USA and Russian Federation mortality from Ischemic Heart Disease. Epidemiology and Vaccinal Prevention. 2018; 17 (4): 30–7 (in Russ.). DOI: 10.31631/2073-3046-2018-17-4-30-37
  3. Chazova I.E., Zhernakova Yu.V. Diagnosis and treatment of arterial hypertension. Clinical guidelines. Systemic Hypertension. 2019; 16 (1): 6–31 (in Russ.). DOI: 10.26442/2075082X.2019.1.190179
  4. Cardiovascular disease. World Health Organization. https://www.who.int/ru/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed March 10, 2020) (in Russ.).
  5. Neumann J.T., Goβling A., Sörensen N.A., Blankenberg S., Magnussen Ch., Westermann D. Temporal trends in incidence and outcome of acute coronary syndrome. Clin. Res. Cardiol. 2020; 109: 1186–92. DOI: 10.1007/s00392-020-01612-1
  6. Kozik V.A., Lozhkina N.G., Glebchenko E.A., Khasanova M.Kh., Kuimov A.D. Acute coronary syndrome: a modern strategy for reperfusion and drug treatment. Modern problems of science and education. 2017; 1 (in Russ.).
  7. Dyleva Yu.A., Uchasova E.G., Gruzdeva O.V., Fedorova N.V., Kashtalap V.V. Clinical and diagnostic significance of stimulating growth factor (st2) for evaluation of early complications in myocardial infarction. The Siberian Medical Journal. 2016; 31 (1): 27–31 (in Russ.). DOI: 10.29001/2073- 8552-2016-31-1-27-31
  8. Hamm C.W., Bassand J.-P., Agewall S., Bax J., Boersma E., Bueno H. et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2011; 32: 2999–3054. DOI: 10.1093/eurheartj/ehr236
  9. Ralapanawa U., Kumarasiri P.V.R., Jayawickreme K.P., Kumarihamy P., Wijeratne Y., Ekanayake M., Dissanayake Ch. Epidemiology and risk factors of patients with types of acute coronary syndrome presenting to a tertiary care hospital in Sri Lanka. BMC Cardiovasc. Disord. 2019; 19: 229. DOI: 10.1186/s12872-019-1217-x
  10. Eisen A., Giugliano R.P., Braunwald E. Updates on acute coronary syndrome: a review. JAMA Cardiol. 2016; 1 (6): 718–30. DOI: 10.1001/jamacardio.2016.2049
  11. Acute coronary syndromes without persistent ST-segment elevation Clinical recommendations. Russian Society of Cardiology; 2016 (in Russ.).
  12. Roffi M., Patrono C., Collet J.P., Mueller C., Valgimigli M, Andreotti F., ESC Scientific Document Group, 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2016; 37 (3): 267–315. DOI: 10.1093/eurheartj/ehv320
  13. Danese E., Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann. Translat. Med. 2016; 4 (10): 194. DOI: 10.21037/atm.2016.05.19
  14. Biaggi P., Ammann C., Imperiali M., HammererLercher A., Breidthardt T., Müller C. et al. Soluble ST2 – a new biomarker in heart failure. Cardiovasc. Med. 2019; 22: w02008 DOI: 10.4414/cvm.2019.02008
  15. Zagidullin N., Motloch L.J., Gareeva D., Hamitova A., Lakman I., Krioni I. et al. Combining novel biomarkers for risk stratification of two-year cardiovascular mortality in patients with ST-elevation myocardial infarction. J. Clin. Med. 2020; 9 (2): 550. DOI: 10.3390/jcm9020550
  16. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001; 69 (3): 89–95. DOI: 10.1067/mcp.2001.113989
  17. Kumar M., Sarin S.K. Biomarkers of diseases in medicine. Current Trends in Science. Platinum Jubilee Special. 2005; 12: 403–17.
  18. Colburn W.A. Optimizing the use of biomarkers, surrogate endpoints, and clinical endpoints for more efficient drug development. J. Clin. Pharmacol. 2000; 40 (12 Pt. 2): 1419–27.
  19. Ho J.E., Lyass A., Courchesne P., Chen G., Liu C., Yin X. et al. Protein biomarkers of cardiovascular disease and mortality in the community. J. Am. Heart Assoc. 2018; 7 (14). PII: e008108. DOI: 10.1161/JAHA.117.008108
  20. Garg P., Morris P., Fazlanie A.L., Vijayan S., Dancso B., Ghosh A. et al. Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Intern. Emerg. Med. 2017; 12: 147–55. DOI: 10.1007/s11739-017-1612-1
  21. Ostanko V.L., Kalacheva T.P., Kalyuzhina E.V., Livshits I.K., Shalovay A.A., Chernogoryuk G.E. et al. Biological markers in risk stratification and progression of cardiovascular disease: present and future. Bulletin of Siberian Medicine. 2018; 17 (4): 264–80 (in Russ.). DOI: 10.20538/1682-0363- 2018-4-264-280
  22. Aydin S., Ugur K., Aydin S., Sahin I., Yardim M. Biomarkers in acute myocardial infarction: current perspectives. Vasc. Health Risk Manag. 2019; 15: 1–10. DOI: 10.2147/VHRM.S166157
  23. Pascual-Figal D.A., Lax A., Perez-Martinez M.T., del Carmen Asensio-Lopez M., Sanchez-Mas J., & on behalf of GREAT Network. Clinical relevance of sST2 in cardiac diseases. Clin. Chem. Lab. Med. 2016; 54 (1). DOI: 10.1515/cclm-2015-0074
  24. Kopeva K.V., Grakova E.V., Teplyakov A.T. New biomarkers of heart failure: diagnostic and prognostic value of NT-proBNP and interleukin receptor family member st2. Complex Issues of Cardiovascular Diseases. 2018; 7 (1): 94–101 (in Russ.). DOI: 10.17802/2306-1278-2018-7-1-94-101
  25. Januzzi J.L., Mebazaa A., Di Somma, S. ST2 and Prognosis in Acutely Decompensated Heart Failure: The International ST2 Consensus Panel. Am. J. Cardiol. 2015; 115 (7): 26. B–31B. DOI: 10.1016/j.amjcard.2015.01.037
  26. Weinberg E.O., Shimpo M., De Keulenaer G.W., MacGillivray C., Tominaga S., Solomon S.D. et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002; 106: 2961–6.
  27. Mel’nik A.A. Stimulating growth factor – a valuable prognostic marker for cardiovascular diseases. 2016.11.27. “Health of Ukraine of the 21st Century”. 2016; 20 (393). https://health-ua.com/article/6772-stimuliruyushij-faktor-rosta--tcennyj-prognosticheskij-marker-pri-serdechno
  28. Maisel A.S., Somma S.D. Do we need another heart failure biomarker: focus on soluble suppression of tumorigenicity 2 (sST2). Eur. Heart J. 2017; 38 (30): 2325–33. DOI: 10.1093/eurheartj/ehw462
  29. Braunwald E. Biomarkers in heart failure. New Engl. J. Med. 2008; 358 (20): 2148–59. DOI: 10.1056/nejmra0800239
  30. Gerber Y., Weston S.A., Enriquez-Sarano M., Jaffe A.S., Manemann S.M., Jiang R., Roger V.L. Contemporary risk stratification after myocardial infarction in the community: performance of scores and incremental value of soluble suppression of tumorigenicity-2. J. Am. Heart Assoc. 2017; 6 (10): e005958. DOI: 10.1161/jaha.117.005958
  31. Wang X.Y., Zhang F., Zhang C., Zheng L.R., Yang J. The biomarkers for acute myocardial infarction and heart failure. Biomed Res Int. 2020; 2020: 2018035. DOI: 10.1155/2020/2018035 32. Shah R.V., Januzzi J.L. ST2: a novel remodeling biomarker in acute and chronic heart failure. Curr. Heart Fail. Rep. 2010; 7: 9–14. DOI: 10.1007/s11897-010-0005-9
  32. Shimpo M., Morrow D.A., Weinberg E.O. et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004; 109: 2186–90.
  33. Sabatine M.S., Morrow D.A., Higgins L.J. et al. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation. 2008; 117: 1936–44.
  34. Kohli P., Bonaca M.P., Kakkar R., Kudinova A.Y., Scirica B.M., Sabatine M.S., Morrow D.A. Role of ST2 in Non-ST-Elevation Acute Coronary Syndrome in the MERLIN-TIMI 36 Trial. Clin. Chem. 2011; 58 (1): 257–66. DOI: 10.1373/clinchem.2011.173369
  35. Mechtouff L., Paccalet A., Crola Da Silva C. et al. Prognosis value of serum soluble ST2 level in acute ischemic stroke and STEMI patients in the era of mechanical reperfusion therapy. J. Neurol. 2021. DOI: 10.1007/s00415-021-10865-3
  36. Dhillon O.S., Narayan H.K., Quinn P.A., Squire I.B., Davies J.E., Ng L.L. Interleukin 33 and ST2 in non–ST-elevation myocardial infarction: Comparison with Global Registry of Acute Coronary Events Risk Scoring and NT-proBNP. Am. Heart J. 2011; 161 (6): 1163–70. DOI: 10.1016/j.ahj.2011.03.025
  37. Richards A.M., Di Somma S., Mueller T. ST2 in Stable and unstable ischemic heart diseases. Am. J. Cardiol. 2015; 115 (7): 48B–58B. DOI: 10.1016/j.amjcard.2015.01.041
  38. Bai S., Liu H., Wu H., Wang X. Li R., Li X. et al. Predictive value of soluble suppression of tumorigenicity 2 on myocardial reperfusion. Intern. Med. J. 2019. DOI: 10.1111/imj.14639
  39. Gibson C.M., Schöming A. Coronary and myocardial angiography. Angiographic assessment of both epicardial and myocardial perfusion. Circulation. 2004; 109: 3096–105.
  40. Horszczaruk G.J., Kwasiborski P., Rdzanek A., Filipiak K.J., Kochman J., Opolski G. TIMI myocardial perfusion grade and ST-segment resolution in the assessment of coronary reperfusion after primary angioplasty. Kardiologia Polska. 2014; 72 (1): 27–33. DOI: 10.5603/KP.a2013.0186
  41. Bailleul C., Aissaoui N., Cayla G., Dillinger J.-G., Jouve B., Schiele F., Puymirat E. Prognostic 480 Creative Cardiology. 2021; 15 (4) DOI: 10.24022/1997-3187-2021-15-4-468-481 Reviews impact of prepercutaneous coronary intervention TIMI flow in patients with ST-segment and nonST-segment elevation myocardial infarction: Results from the FAST-MI 2010 registry. Arch. Cardiovasc. Dis. 2018; 111 (2): 101–8. DOI: 10.1016/j.acvd.2017.04.004
  42. Weir R.A.P., Miller A.M., Murphy G.E.J., Clements S., Steedman T., Connell J.M.C., McMurray J. J. Serum Soluble ST2. J. Am. Coll. Cardiol. 2010; 55 (3): 243250. DOI: 10.1016/j.jacc.2009.08.047
  43. Kercheva M.A., Ryabova T.R., Gusakova A.M. Аdverse left ventricular remodeling and the serum levels of matrix metalloproteinases, biomarkers of myocardium dysfunction and inflammation in patients with acute primary anterior STEMI. The Siberian Medical Journal. 2017; 32 (1): 31–5 (in Russ.). DOI: 10.29001/2073-8552-2017-32-1-31-35
  44. Prabhu S.D., Frangogiannis N.G. The Biological Basis for Cardiac Repair after Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016; 119 (1): 91–112. DOI: 10.1161/CIRCRESAHA.116.303577
  45. Bhatt A.S., Ambrosy A.P., Velazquez E.J. Adverse Remodeling and Reverse Remodeling After Myocardial Infarction. Curr. Cardiol. Rep. 2017; 19 (8): 71. DOI: 10.1007/s11886-017-0876-4
  46. Tennant R., Wiggers C.J. The effect of coronary occlusion on myocardial contraction. Am. J. Physiol. Leg. Content. 1935; 112 (2): 351–61.
  47. Tang R., Long T., Lui K.O., Chen Y., Huang Z.P. A Roadmap for Fixing the Heart: RNA Regulatory Networks in Cardiac Disease [published online ahead of print, 2020 Apr 25]. Mol Ther Nucleic Acids. 2020; 20: 673–86. DOI: 10.1016/j.omtn.2020.04.007.
  48. Park S., Kim I.C., Kim H. et al. Ability of soluble ST2 to predict left ventricular remodeling in patients with acute coronary syndrome. Heart Vessels (2021). DOI: 10.1007/s00380-021-01905-z
  49. Joyce E., Hoogslag G.E., Leong D.P., Debonnaire P., Katsanos S., Boden H., Delgado V. Association between left ventricular global longitudinal strain and adverse left ventricular dilatation after ST-segment-elevation Myocardial Infarction. Circulation: Cardiovascular Imaging. 2013; 7 (1): 74–81. DOI: 10.1161/circimaging.113.000982
  50. Zile M.R., Baicu C.F., Ikonomidis S., Stroud R.E., Nietert P.J., Bradshaw A.D., LeWinter M.M. Myocardial stiffness in patients with Heart Failure and a preserved Ejection Fraction: contributions of collagen and titin. Circulation. 2015; 131 (14): 1247–59. DOI: 10.1161/circulationaha.114.013215
  51. Drinevskaya U.P., Gubkin S.V. The role of a new biomarker in the prognosis of cardiovascular events in patients with acute myocardial infarction. Military medicine. 2016; 4; 72–5. http://rep.bsmu.by/handle/BSMU/11016
  52. Baba Y., Maeda K., Yashiro T., Inage E., Kasakura K., Suzuki R. et al. GATA2 is a critical transactivator for the human IL1RL1/ST2 promoter in mast cells/basophils: opposing roles for GATA2 and GATA1 in human IL-1RL1/ST2 gene expression. J. Biol. Chem. 2012; 287 (39): 32689–96. DOI: 10.1074/jbc.m112.374876

About Authors

  • Ludmila V. Khoroshikh, Postgraduate; ORCID
  • Chinara V. Khotsanyan, Cand. Med. Sci., Cardiologist; ORCID
  • Ol’ga I. Gromova, Cand. Med. Sci., Cardiologist, Researcher; ORCID
  • Naida I. Bulaeva, Cand. Biol. Sci., Senior Researcher; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery