Acute coronary syndrome: new realities in the era of the COVID-19 pandemic

Authors: Serebrennikov I.I., Kopylov F.Yu., Komarov R.N., Mukanova M.B., Ismailbaev A.M., Markitan S.V., Gafurov F.S.

Company: 1 I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
2 Egor'evsk Central Regional Hospital, Egor'evsk, Moscow Region, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2022-16-2-163-178

For citation: Serebrennikov I.I., Kopylov F.Yu., Komarov R.N., Mukanova M.B., Ismailbaev A.M., Markitan S.V., Gafurov F.S. Acute coronary syndrome: new realities in the era of the COVID-19 pandemic. Creative Cardiology. 2022; 16 (2): 163–78 (in Russ.). DOI: 10.24022/1997-3187-2022-16-2-163-178

Received / Accepted:  30.11.2021 / 25.06.2022

Keywords: COVID-19 acute coronary syndrome diversion of medical resources high rates of morbidity and mortality



Subscribe 🔒

 

Abstract

Coronavirus infection (COVID-19) pandemic is a global health problem associated with high rates of morbidity and mortality. In this difficult time, the topic of acute coronary syndrome (ACS) is complicated by a number of clinically significant issues, such as COVID-induced myocardial damage, uncertainty of this emergency management, the need for a clear optimization of diagnostic and therapeutic measures, as well as ensuring maximum protection of medical personnel. In addition, there is a decrease in the number of hospitalizations for ACS worldwide, which is associated with the reluctance of patients to seek medical help and the redirection of medical resources in favor of combating the pandemic. Given that the primary pathophysiological mechanism of COVID-19 is a significant shift in blood coagulation rates, it is necessary to establish a relationship between this infection and an increased risk of acute coronary disease. The high risk of developing ACS associated with COVID-19 may be associated with atherosclerotic plaque rupture caused by endothelial cell damage, cytokine storms and the patient's inflammatory status. In this review will present aspects of the impact of the COVID-19 pandemic on the diagnosis, clinical course and treatment of ACS, as well as published data on the results of treatment of coronary syndrome in a pandemic.

References

  1. Ritchie H., Ortiz-Ospina E., Beltekian D., Mathieu E., Hasell J., Macdonald B. et al. Coronavirus Pandemic (COVID-19). 2020. Available at:https://ourworldindata.org/coronavirus (дата обращения 19.05.2022/accessed May 19, 2022).
  2. Rashid M., Wu J., Timmis A., Curzen N., Clarke S., Zaman A. et al. Outcomes of COVID-19- positive acute coronary syndrome patients: a multisource electronic healthcare records study from England. J. Intern. Med. 2021. DOI: 10.1111/joim.13246
  3. Montone R.A., Iannaccone G., Meucci M.C., Gurgoglione F., Niccoli G. Myocardial and microvascular injury due to coronavirus disease 2019. Eur. Cardiol. 2020; 15: e52. DOI: 10.15420/ecr. 2020.22
  4. Bonow R., Fonarow G., O'Gara P., Yancy C. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. 2020; 5 (3): 751–3. DOI: 10.1001/jamacardio.2020.1105
  5. Cameli M., Pastore M., Mandoli G., D'Ascenzi F., Focardi M., Biagioni G. et al. COVID-19 and acute coronary syndromes: current data and future implications. Front. Cardiovasc. Med. 2021; 7: 593496. DOI: 10.3389/fcvm.2020.593496
  6. De Filippo O., D'Ascenzo F., Angelini F., Bocchino P.P., Conrotto F., Saglietto A. et al. Reduced rate of hospital admissions for acs during Covid-19 outbreak in Northern Italy. N. Engl. J. Med. 2020; 383: 88–9. DOI: 10.1056/NEJMc2009166
  7. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. DOI: 10.1016/S0140-6736(20)30183-5
  8. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA J. Am. Med. Assoc. 2020; 323: 1061–9. DOI: 10.1001/jama. 2020.1585
  9. Li B., Yang J., Zhao F., Zhi L., Wang X., Liu L. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020; 109: 531–8. DOI: 10.1007/s00392-020-01626-9
  10. Kang Y., Chen T., Mui D., Ferrari V., Jagasia D., Scherrer-Crosbie M. et al. Cardiovascular manifestations and treatment considerations in covid-19. Heart. 2020; 106: 1132–41. DOI: 10.1136/heartjnl-2020-317056
  11. Schiavone M., Gobbi C., Biondi-Zoccai G., D'Ascenzo F., Palazzuoli A., Gasperetti A. et al. Acute coronary syndromes and COVID-19: exploring the uncertainties. J. Clin. Med. 2020; 9 (6): 1683. DOI: 10.3390/jcm9061683
  12. Musher D., Abers M., Corrales-Medina V. Acute infection and myocardial infarction. N. Engl. J. Med. 2019; 380: 171–6. DOI: 10.1056/NEJMra1808137
  13. Stary H., Chandler A., Dinsmore R., Fuster V., Glagov S., Insull W. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation. 1995; 92: 1355–74. DOI: 10.1161/01.CIR.92.5.1355
  14. Mauriello A., Sangiorgi G., Fratoni S., Palmieri G., Bonanno E., Anemona L. et al. Diffuse and active inflammation occurs in both vulnerable and stable plaques of the entire coronary tree: a histopathologic study of patients dying of acute myocardial infarction. J. Am. Coll. Cardiol. 2005; 45: 1585–93. DOI: 10.1016/j.jacc.2005.01.054.
  15. Crea F., Liuzzo G. Pathogenesis of acute coronary syndromes. J. Am. Coll. Cardiol. 2013; 61: 1–11. DOI: 10.1016/j.jacc.2012.07.064 16. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 2013; 368: 2004–13. DOI: 10.1056/NEJMra1216063 17. Fuster V., Badimon L., Badimon J., Chesebro J., Epstein F. The pathogenesis of coronary artery disease and the acute coronary syndromes. N. Engl. J. Med. 1992; 326: 242–50.
  16. Liu P., Blet A., Smyth D., Li H. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020; 142 (1): 68–78. DOI: 10.1161/CIRCULATIONAHA.120.047549
  17. Rose J., Voora D., Cyr D., Lucas J., Zaas A., Woods C. et al. Gene expression profiles link respiratory viral infection, platelet response to aspirin, and acute myocardial infarction. PLoS ONE. 2015; 10: e0132259. DOI: 10.1371/journal.pone.0132259
  18. Clerkin K., Fried J., Raikhelkar J., Sayer G., Griffin J., Masoumi A. et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. 2020; 141: 1648–55. DOI: 10.1161/CIRCULATIONAHA.120.046941
  19. Zheng Y., Ma Y., Zhang J., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020; 17: 259–60. DOI: 10.1038/s41569-020-0360-5
  20. Chieffo A., Stefanini G., Price S., Barbato E., Tarantini G., Karam N. et al. EAPCI position statement on invasive management of acute coronary syndromes during the COVID-19 pandemic. Eur. Heart J. 2020; 41: 1839–51. DOI: 10.1093/eurheartj/ehaa381
  21. Skulstad H., Cosyns B., Popescu B.A., Galderisi M., Salvo G.D., Donal E. et al. COVID-19 pandemic and cardiac imaging: EACVI recommendations on precautions, indications, prioritization, and protection for patients and healthcare personnel. Eur. Heart J. Cardiovasc. Imaging. 2020; 21: 592–8. DOI: 10.1093/ehjci/jeaa072
  22. Arentz M., Yim E., Klaff L., Lokhandwala S., Riedo F.X., Chong M. et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA. 2020; 323 (16): 1612–4. DOI: 10.1001/jama.2020.4326
  23. Sato R., Nasu M. A review of sepsis-induced cardiomyopathy. J. Intensive Care. 2015; 3: 48. DOI: 10.1186/s40560-015-0112-5
  24. Sala S., Peretto G., Gramegna M., Palmisano A., Villatore A., Vignale D. et al. Acute myocarditis presenting as a reverse tako-tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur. Heart J. 2020; 41 (19): 1861–2. DOI: 10.1093/eurheartj/ehaa286
  25. Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H. et al. ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018; 39: 119–77. DOI: 10.1093/eurheartj/ehx393
  26. Troponin and BNP Use in COVID-19. American College of Cardiology. Available at:https://www. acc.org/latest-in-cardiology/articles/2020/03/18/15/25/troponin-and-bnp-use-in-covid19 (дата обращения 17.05.2022/accessed May 17, 2022).
  27. Stefanini G., Montorfano M., Trabattoni D., Andreini D., Ferrante G., Ancona M. et al. STelevation myocardial infarction in patients with COVID-19: clinical and angiographic outcomes. Circulation. 2020; 141: 2113–6. DOI: 10.1161/CIRCULATIONAHA.120.047525
  28. Hendren N., Drazner M., Bozkurt B., Cooper L. Jr. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020; 141: 1903–14. DOI: 10.1161/CIRCULATIONAHA.120.047349
  29. Cosyns B., Lochy S., Luchian M.L., Gimelli A., Pontone G., Allard S.D. et al. The role of cardiovascular imaging for myocardial injury in hospitalized COVID-19 patients. Eur. Heart J. Cardiovasc. Imaging. 2020; 21: 709–14. DOI: 10.1093/ehjci/jeaa136
  30. Jing Z., Zhu H., Yan X., Chai W., Zhang S. Recommendations from the peking union medical college hospital for the management of acute myocardial infarction during the COVID-19 outbreak. Eur. Heart J. 2020; 41: 1791–4. DOI: 10.1093/eurheartj/ehaa258
  31. Mahmud E., Dauerman H., Welt F., Messenger J., Rao S., Grines C. et al. Management of acute myocardial infarction during the COVID-19 pandemic. J. Am. Coll. Cardiol. 2020; 96: 336–45. S0735-1097(20)35026-9. DOI: 10.1016/j.jacc.2020.04.039
  32. Collet J., Thiele H., Barbato E., Barthélémy O., Bauersachs J., Bhatt D. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2020: 1–79. DOI: 10.1093/eurheartj/ehaa575
  33. Valente S., Anselmi F., Cameli M. Acute coronary syndromes during COVID-19. Eur. Heart J. 2020; 41: 2047–49. DOI: 10.1093/eurheartj/ehaa457
  34. Zeng J., Huang J., Pan L. How to balance acute myocardial infarction and COVID-19: the protocols from Sichuan Provincial People's Hospital. Intensive Care Med. 2020; 46: 1111–3. DOI: 10.1007/s00134-020-05993-9
  35. Welt F., Shah P., Aronow H., Bortnick A., Henry T., Sherwood M. et al. American College of Cardiology's Interventional Council and the Society for Cardiovascular Angiography and Interventions. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: from the ACC's interventional council and SCAI. J. Am. Coll. Cardiol. 2020; 75: 2372–5. DOI: 10.1016/j.jacc.2020.03021
  36. Wang N., Zhang M., Su H., Huang Z., Lin Y., Zhang M. Fibrinolysis is a reasonable alternative for STEMI care during the COVID-19 pandemic. J. Int. Med. Res. 2020; 48: 300060520966151. DOI: 10.1177/0300060520966151
  37. Zhang L., Fan Y., Lu Z. Experiences and lesson strategies for cardiology from the COVID-19 outbreak in Wuhan, China, by 'on the scene' cardiologists. Eur. Heart J. 2020; 41: 1788–90. DOI: 10.1093/eurheartj/ehaa266
  38. Keeley E.C., Boura J.A., Grines C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003; 361: 13–20. DOI: 10.1016/S0140-6736(03)12113-7
  39. De Rosa S., Spaccarotella C., Basso C., Calabrò M.P., Curcio A., Filardi P.P. et al. Società Italiana di Cardiologia and the CCU Academy investigators group. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur. Heart J. 2020; 41: 2083–8. DOI: 10.1093/eurheartj/ehaa610
  40. Chu C., Cheng V., Hung I., Wong M., Chan K., Chan K. et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004 DOI: 10.1136/thorax. 2003.012658
  41. Kim U., Won E., Kee S., Jung S., Jang H. Combination therapy with lopinavir/ritonavir, ribavirin and interferon – a for Middle East respiratory syndrome. Antivir. Ther. 2016; 21: 455–9. DOI: 10.3851/IMP3002
  42. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G. et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med. 2020; 382: 1787–99. DOI: 10.1056/NEJMoa2001282
  43. Duangchaemkarn K., Reisfeld B., Lohitnavy M. A pharmacokinetic model of lopinavir in combination with ritonavir in human; Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA. 2014; 5699–702.
  44. Driggin E., Madhavan M., Bikdeli B., Chuich T., Laracy J., Bondi-Zoccai G. et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J. Am. Coll. Cardiol. 2020; 75 (18): 2352–71. DOI: 10.1016/j.jacc.2020.03.031
  45. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with COVID-19. World Health Organization. Available at: https://www.who.int/news-room/commentaries/detail/the-use-of-non-steroidal-anti-inflammatorydrugs-(nsaids)-in-patients-with-covid-19 (дата обращения 18.05.2020/accessed May 18, 2020).
  46. Little P. Non-steroidal anti-inflammatory drugs and covid-19. BMJ. 2020; 368: m1185. DOI: 10.1136/bmj.m1185
  47. Capel R., Herring N., Kalla M., Yavari A., Mirams G., Douglas G. et al. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current if: novel electrophysiological insights and therapeutic potential. Heart Rhythm. 2015; 12 (10): 2186–94. DOI: 10.1016/j.hrthm.2015.05.027
  48. Vaduganathan M., Vardeny O., Michel T., McMurray J., Pfeffer M., Solomon S. Renin–angiotensin– aldosterone system inhibitors in patients with COVID-19. N. Engl. J. Med. 2020; 382: 1653–9. DOI: 10.1056/NEJMsr2005760
  49. Sanders J., Monogue M., Jodlowski T., Cutrell J. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020; 323 (18): 1824–36. DOI: 10.1001/jama.2020.6019
  50. Peterson D., Van Ermen A. Increased warfarin requirements in a patient with chronic hepatitis C infection receiving sofosbuvir and ribavirin. Am. J. Health Pharm. 2017; 74: 888–92. DOI: 10.2146/ajhp160730
  51. Puglisi G., Smith S., Jankovich R., Ashby C., Jodlowski T. Paritaprevir/ritonavir/ombitasvir + dasabuvir plus ribavirin therapy and inhibition of the anticoagulant effect of warfarin: a case report. J. Clin. Pharmacol. 2017; 42: 115–8. DOI: 10.1111/jcpt.12475
  52. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020; 18 (5): 1094–9. DOI: 10.1111/jth.14817
  53. Metzler B., Siostrzonek P., Binder R.K., Bauer A., Reinstadler S.J. Decline of acute coronary syndrome admissions in Austria since the outbreak of COVID-19: the pandemic response causes cardiac collateral damage. Eur. Heart J. 2020; 41: 1852–3. DOI: 10.1093/eurheartj/ehaa314
  54. Huet F., Prieur C., Schurtz G., Gerbaud E., Manzo-Silberman S., Vanzetto G. et al. One train may hide another: acute cardiovascular diseases could be neglected because of the COVID-19 pandemic. Arch. Cardiovasc. Dis. 2020; 113: 303–7. DOI: 10.1016/j.acvd.2020.04.002
  55. Garcia S., Albaghdadi M., Meraj P., Schmidt C., Garberich R., Jaffer F. et al. Reduction in ST-segment elevation cardiac catheterization laboratory activations in the United States during COVID-19 pandemic. J. Am. Coll. Cardiol. 2020; 75: 2871–2. DOI: 10.1016/j.jacc.2020.04.011
  56. Rodriguez-Leor O., Cid-Alvarez B. ST-segment elevation myocardial infarction care during COVID-19: losing sight of the forest for the trees. JACC Case Rep. 2020; 2: 1625–7. DOI: 10.1016/j.jaccas.2020.04.011
  57. Quadri G., Rognoni A., Cerrato E., Baralis G., Boccuzzi G., Brsic E. et al. Catheterization laboratory activity before and during COVID-19 spread: a comparative analysis in Piedmont, Italy, by the Italian Society of Interventional Cardiology (GISE). Int. J. Cardiol. 2020; 323: 288–91. DOI: 10.1016/j.ijcard.2020.08.072
  58. Yousefzai R., Bhimaraj A. Misdiagnosis in the COVID-19 Era: when zebras are everywhere, don't forget the horses. JACC Case Rep. 2020; 2: 1614–9. DOI: 10.1016/j.jaccas.2020.04.018
  59. Scott I.A. “Time is muscle” in reperfusing occluded coronary arteries in acute myocardial infarction. Med. J. Aust. 2010; 193: 493–5. DOI: 10.5694/j.1326-5377.2010.tb04030.x
  60. Trabattoni D., Montorsi P., Merlino L. Late STEMI and NSTEMI patients' emergency calling in COVID-19 outbreak. Can. J. Cardiol. 2020; 36: 1161.e7–8. DOI: 10.1016/j.cjca.2020.05.003
  61. Tam C., Cheung K., Lam S., Wong A., Yung A., Sze M. et al. Impact of coronavirus disease 2019 (COVID-19) outbreak on outcome of myocardial infarction in Hong Kong, China. Catheter Cardiovasc Interv. 2020; 13: e006631. DOI: 10.1002/ccd28943
  62. Boukhris M., Hillani A., Moroni F., Annabi M.S., Addad F., Ribeiro M.H. et al. Cardiovascular implications of the COVID-19 pandemic: a global perspective. Can. J. Cardiol. 2020; 36: 1068–80. DOI: 10.1016/j.cjca.2020.05.018
  63. Baldi E., Sechi G.M., Mare C., Canevari F., Brancaglione A., Primi R. et al. Lombardia CARe researchers. Out-of-hospital cardiac arrest during the Covid-19 outbreak in Italy. N. Engl. J. Med. 2020; 383: 496–8. DOI: 10.1056/NEJMc2010418
  64. Mountantonakis S., Saleh M., Coleman K., Kuvin J., Singh V., Jauhar R. et al. Out-of-hospital cardiac arrest and acute coronary syndrome hospitalizations during the COVID-19 surge. J. Am Coll. Cardiol. 2020; 76: 1271–3. DOI: 10.1016/j.jacc.2020.07.021
  65. Baigent C., Windecker S., Andreini D., Arbelo E., Barbato E., Bartorelli A.L. et al. Task force for the management of COVID-19 of the European Society of Cardiology, European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 1-epidemiology, pathophysiology, and diagnosis. Cardiovasc. Res. 2022; 118 (6): 1385–412. DOI: 10.1093/cvr/cvab342
  66. Order of the Ministry of Health of the Moscow Region No. 50-R dated 04/29/2020 “On routing patients to provide specialized, including hightech, medical care with acute coronary syndrome in inpatient conditions without suspicion and with confirmed covid-19 disease”. Available at: https://mz.mosreg.ru/dokumenty/normotvorchestvo/rasporyaditelnye-dokumenty-ministerstva/06-05- 2020-18-06-45-rasporyazhenie-ministerstvazdravookhraneniya-mosk (accessed May 04, 2022) (in Russ.).

About Authors

  • Igor’ I. Serebrennikov, Postgraduate; ORCID
  • Filipp Yu. Kopylov, Dr. Med. Sci., Professor; ORCID
  • Roman N. Komarov, Dr. Med. Sci., Chief of Chair; ORCID
  • Maruar B. Mukanova, Postgraduate; ORCID
  • Alisher M. Ismailbaev, Cand. Med. Sci., Associate Professor; ORCID
  • Sergey V. Markitan, Chief Physician; ORCID
  • Furkatdzhon S. Gafurov, Cand. Med. Sci., Head of Department; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery