Obesity and COVID-19 – a double blow to the heart

Authors: Lifanova L.S., Gromova O.I.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2022-16-3-289-301

For citation: Lifanova L.S., Gromova O.I. Obesity and COVID-19 – a double blow to the heart. Creative Cardiology.2022; 16 (3): 289–301 (in Russ.). DOI: 10.24022/1997-3187-2022-16-3-289-301

Received / Accepted:  28.07.2022 / 05.09.2022

Keywords: COVID-19 SARS-CoV-2 obesity cardiovascular disease

Full text:  

 

Abstract

Obesity is one of the main severe COVID-19 risk factors. SARS-CoV-2 causes endothelitis that lead to inflammation and prothrombotic state. Also visceral adipose tissue is a source of different prothrombogenic and proinflammatory cytokines that make prognosis and survival of patients with COVID-19 worse. The synergy of the COVID-19 and obesity pandemics is a double blow to health, especially in young patients. Weight loss due to lifestyle modifications and vaccination are effective methods of the severe COVID-19 prevention in obese patients. This review presents the main pathogenetic aspects of cardiovascular disease development and progression in obese patients with COVID-19 and possible methods of adverse outcomes prevention in this group of patients.

References

  1. The online map of the COVID-19 in Russia and in the world https://koronavirus-karta.online/#koronavirus-v-mire-dannye-na-segodnya (accessed August 28, 2022).
  2. Stefan N., Birkenfeld A.L., Schulze M.B. Global pandemics interconnected – obesity, impaired metabolic health and COVID-19. Nature Reviews. Endocrinology. 2021. DOI: 10.1038/s41574-020- 00462-1
  3. Stefan N., Birkenfeld A.L., Schulze M.B., Ludwig D.S. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020; 16: 341–2. DOI: 10.1038/s41574-020-0364-6
  4. Ritchie H., Roser M. What share of adults are obese? Our World in Data. https://ourworldindata.org/obesity (accessed July 25, 2022).
  5. Ritchie H. Coronavirus pandemic (COVID-19). Our World In Data. https://ourworldindata.org/coronavirus (accessed August 3, 2022)
  6. Kass D.A., Duggal P., Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet. 2020; 395: 1544–5. DOI: 10.1016/S0140- 6736(20)31024-2
  7. Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A. et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020; 28: 1195–9. DOI: 10.1002/oby.22831
  8. Gao F., Zheng K.I., Xiao-Bo Wang, Qing-Feng Sun, Ke-Hua Pan, Ting-Yao Wang et al. Obesity is a risk factor for greater COVID-19 severity. Diabetes Care. 2020; 43: 72–4. DOI: 10.2337/dc20-0682
  9. Hamer M., Kivimäki M., Gale C.R., Batty G.D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a communitybased cohort study of 387,109 adults in UK. Brain Behav. Immun. 2020; 87: 184–7. DOI: 10.1016/j.bbi.2020.05.059
  10. De Cássia Menezes Soares R., Mattos L.R., Raposo L.M. Risk factors for hospitalization and mortality due to COVID-19 in Espírito Santo State, Brazil. Am. J. Trop. Med. Hyg. 2020; 103: 1184–90. DOI: 10.4269/ajtmh.20-0483
  11. Petrilli Ch.M., Jones S.A., Yang J., Rajagopalan H., O'Donnell L., Chernyak Y. et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. Br. Med. J. 2020; 369: 79–85. DOI: 10.1136/bmj.m1966
  12. Kim L., Garg Sh., O'Halloran A., Whitaker M., Pham H., Anderson E.A. et al. Risk factors for intensive care unit admission and in- hospital mortality among hospitalized adults identified through the U.S. coronavirus disease 2019 (COVID-19)- Associated Hospitalization Surveillance Network (COVID- NET). Clin. Infect. Dis. 2020; 3: 79–85. DOI: 10.1093/cid/ciaa1012
  13. Cunningham J.W., Vaduganathan M., Claggett B.L., Jering K.S., Bhatt A.S., Rosenthal N. et al. Clinical outcomes in young US adults hospitalized with COVID-19. JAMA Intern. Med. 2020; 7: 31–3. DOI: 10.1001/jamainternmed.2020.5313
  14. Williamson E.J., Walker A.J., Bhaskaran K., Bacon S., Bates Ch., Morton C.E. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020; 584: 430–6. DOI: 10.1038/s41586-020-2521-4
  15. Petersen A., Bressem K., Albrecht J., Thieβ H.M., Vahldiek J., Hamm B. et al. The role of visceral adiposity in the severity of COVID-19: highlights from a unicenter cross-sectional pilot study in Germany. Metabolism. 2020; 110: 154317. DOI: 10.1016/j.metabol.2020.154317
  16. Yang Yang, Lin Ding, Xianlun Zou, Yaqi Shen, Daoyu Hu, Xuemei Hu et al. Visceral adiposity and high intramuscular fat deposition independently predict critical illness in patients with SARSCOV-2. Obesity. 2020; 28: 2040–8. DOI: 10.1002/oby.22971
  17. Jun Lan, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan et al. Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581: 215–20. DOI: 10.1038/s41586-020-2180-5
  18. Jian Shang, Gang Ye, Ke Shi, Yushun Wan, Chuming Luo, Hideki Aihara et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020; 581: 221–4. DOI: 10.1038/s41586-020-2179-y
  19. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181: 281–92. DOI: 10.1016/j.cell.2020.02.058
  20. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsenet S. al. SARSCoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181: 271–80. DOI: 10.1016/j.cell.2020.02.052
  21. Sungnak W., Ni Huang, Bécavin Ch., Berg M., Queen R., Litvinukova M. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innateimmune genes. Nat. Med. 2020; 26: 681–7. DOI: 10.1038/s41591-020-0868-6
  22. Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., Sperhake J.P., Wong M.N., Allweiss L. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 2020; 383: 590–2. DOI: 10.1056/NEJMc 2011400
  23. Hua Su, Ming Yang, Cheng Wan, Li-Xia Yi, Fang Tang, Hong-Yan Zhu et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020; 98: 219–27. DOI: 10.1016/j.kint.2020.04.003
  24. Tavazzi G., Pellegrini C., Maurelli M., Belliato M., Sciutti F., Bottazzi A. et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 2020; 22: 911–5. DOI: 10.1002/ejhf.1828
  25. Fei Xiao, Meiwen Tang, Xiaobin Zheng, Ye Liu, Xiaofeng Li, Hong Shan et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158: 1831–3. DOI: 10.1053/j.gastro.2020.02.055
  26. Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan Sh., Sehrawat T.S. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020; 26: 1017–32. DOI: 10.1038/s41591-020-0968-3
  27. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B. et al. A crucial role of angiotensin convertingenzyme 2 (ACE2) in SARS coronavirus-inducedlung injury. Nature Med. 2005; 11 (8): 875–9. DOI: 10.1038/nm1267. PMID 1600709
  28. Ying-Ying Zheng, Yi-Tong Ma, Jin-Ying Zhang, Xiang Xie. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020; 8: 14–9. DOI: 10.1038/s41569-020-0360-518
  29. Blokhin I.O., Lentz S.R. Mechanisms of thrombosis in obesity. Curr. Opin. Hematol. 2013; 20: 437–44. DOI: 10.1097/MOH.0b013e3283634443
  30. Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 2020; 383: 120–8. DOI: 10.1056/NEJMoa2015432
  31. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395: 1417–8. DOI: 10.1016/S0140-6736(20)30937-5
  32. Ogihara Y., Yachi S., Takeyama M., Nishimoto Y., Tsujino I. et al. Influence of obesity on incidence of thrombosis and disease severity in patients with COVID-19: From the CLOT-COVID study. J. Cardiol. 2022; 29: 340–7. DOI: 10.1016/j.jjcc.2022.08.011
  33. Lala A., Johnson K.W., Januzzi J.L., Russak A.J., Paranjpe I., Richter F. et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J. Am. Coll. Cardiol. 2020; 76: 533–46. DOI: 10.1016/j.jacc.2020.06.007
  34. Bonow R.O., Fonarow G.C., O'Gara P.T., Yancy C.W. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. 2020; 5: 751–3. DOI: 10.1001/jamacardio.2020.1105
  35. Hendren N.S., Drazner M.H., Bozkurt B., Cooper L.T. Jr. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020; 141: 1903–14. DOI: 10.1161/CIRCULATIONAHA.120.047349
  36. Голухова Е.З., Сливнева И.В., Рыбка М.М., Мамалыга М.Л., Алехин М.Н., Ключников И.В. и др. Легочная гипертензия как фактор оценки риска неблагоприятного исхода у пациентов с COVID-19. Российский кардиологический журнал. 2020; 25 (12): 4136. DOI: 10.15829/1560- 4071-2020-4136 Golukhova E.Z., Slivneva I.V., Rybka M.M., Mamalyga M.L., Alekhin M.N., Klyuchnikov I.V. et al. Pulmonary hypertension as a risk assessment factor for unfavorable outcome in patients with COVID-19. Russian Journal of Cardiology. 2020; 25 (12): 4136 (in Russ.). DOI: 10.15829/1560- 4071-2020-4136
  37. Barletta J.F., Erstad B.L. Drug dosing in hospitalized obese patients with COVID-19. Critical Care. 2022; 7: 7–10. DOI: 10.1186/s13054-022-03941-1
  38. Wittermans E., Grutters J.C., Moeniralam H.S., Ocak G., Voorn G.P., Bos W.J., van de Garde E.M.W. Overweight and obesity are not associated with worse clinical outcomes in COVID-19 patients treated with fixed-dose 6 mg dexamethasone. Int. J. Obesity. 2022; 46: 2000–5. DOI: 10.1038/s41366-022-01204-1
  39. Kuster G.M., Pfister O., Burkard Th., Zhou Q., Twerenbold R., Haaf Ph. et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur. Heart J. 2020; 235: 83–9. DOI: 10.1093/eurheartj/ehaa235
  40. Временные методические рекомендации по профилактике, диагностике и лечению новой коронавирусной инфекции (COVID-19). Версия 16. МЗ РФ. 18.08.2022 г. Temporary guidelines for the prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 16. The Ministry of Health of the Russian federation. 18.08.2022 (in Russ.).
  41. Almandoz J.P., Xie L., Schellinger J.N., Mathew M.S., Gazda Ch., Ofori A. et al. Impact of COVID-19 stay-athome orders on weight- related behaviours among patients with obesity. Clin. Obes. 2020; 10: 12386. DOI: 10.1111/cob.12386
  42. Olsen R.H., Krogh-Madsen R., Thomsen C., Booth F.W., Pedersen B.K. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA. 2008; 299: 1261–3. DOI: 10.1001/jama. 299.11.1259
  43. Leddy A.M., Weiser Sh.D., Palar K., Seligman H. A conceptual model for understanding the rapid COVID-19-related increase in food insecurity and its impact on health and healthcare. Am. J. Clin. Nutr. 2020; 112: 1162–9. DOI: 10.1093/ajcn/nqaa226
  44. Caldwell A.E., Thomas E.A., Rynders C., Holliman B.D., Perreira C., Ostendorf D.M. et al. Improving lifestyle obesity treatment during the COVID-19 pandemic and beyond: new challenges for weight management. Obes. Sci. Pract. 2022; 8 (1): 32–44. DOI: 10.1002/osp4.540
  45. Гуляев П.В., Реснянская С.В., Островская И.В. Выявление постковидного синдрома у пациентов, перенесших новую коронавирусную инфекцию. Современные проблемы здравоохранения и медицинской статистики. 2022; 2: 107–28. DOI: 10.24412/2312-2935-2022-2-107-128 Gulyaev P.V., Resnyanskaya S.V., Ostrovskaya I.V. Detection of post-coronavirus syndrome in patients who have had a new coronavirus infection. Current problems of health care and medical statistics. 2022; 2: 107–28 (in Russ.). DOI: 10.24412/2312-2935-2022-2-107-128
  46. Carfi A., Bernabei R., Landi F. Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020; 324: 603–5. DOI: 10.1001/jama.2020.12603
  47. Puntmann V.O., Carerj M.L., Wieters I., Fahim M., Arendt Ch., Hoffmann J. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (11): 1265–73. DOI: 10.1001/jamacardio.2020.3557
  48. Augustin K., Khabbush A., Williams S., Eaton S., Orford M., Cross J.H. et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018; 17: 84–93. DOI: 10.1016/S1474- 4422(17)30408-8
  49. Barazzoni R., Bischoff S.C., Busetto L., Cederholm T., Chourdakis M. et al. Nutritional management of individuals with obesity and COVID-19: ESPEN expert statements and practical guidance. Clin. Nutr. 2021; 21: 261. DOI: 10.1016/j.clnu. 2021.05.006
  50. Obesity Management and Treatment During COVID-19. American Academy of Pediatrics. 2021.
  51. Krist A.H., Davidson K.W., Mangione C.M., Barry M.J., Cabana M., Caughey A.B. US Preventive Services Task Force Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: US preventive services task force recommendation statement. JAMA. 2020; 324: 2069–75. DOI: 10.1001/jama. 2020.21749
  52. Greenway F.L., Look M., Golden A., Asif I., Nadglowski J., Kyle T., Leider H.L. COVID-19 and the Urgent Need for New Therapies for Obesity. Population Health Management. 2021; 24 (5): 531–4. DOI: 10.1089/pop.2020.0307
  53. De La Fuente M., De Castro N.M. Obesity as a model of premature immunosenescence. Curr. Immunol. Rev. 2012; 1: 63–75. DOI: 10.2174/157339512798991290
  54. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised cont-rolled phase 3 trial in Russia. The Lancet. 2021; 397: 671–81. DOI: 10.1016/s0140- 6736(21)00234-8
  55. Nogrady B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature. 2021; 595: 339–40. DOI: 10.1038/d41586-021-01813-2
  56. Statistics of vaccination against COVID-19 https://gogov.ru/articles/covid-v-stats (accessed August 21, 2022).

About Authors

  • Lubov’ S. Lifanova, Cardiologist, Research; ORCID
  • Ol’ga I. Gromova, Cand. Med. Sci., Researcher; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery