Rotational coronary atherectomy of coronary arteries: modern trends

Authors: Petrosian K.V., Abrosimov A.V., Karaev A.V., Gurdzibeev A.B.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2022-16-3-313-325

For citation: Petrosyan K.V., Abrosimov A.V., Karaev A.V., Gurdzibeev A.B. Rotational coronary atherectomy of coronary arteries – modern trends. Creative Cardiology. 2022; 16 (3): 313–25 (in Russ.). DOI: 10.24022/1997-3187-2022-16-3-313-325

Received / Accepted:  28.07.2022 / 16.09.2022

Keywords: rotational atherectomy atherosclerotic plaque calcification

Full text:  

 

Abstract

Rotational atherectomy (RA) is a technology that allows for percutaneous coronary interventions (PCI) in complex calcified lesions of the coronary arteries. RA works on the principle of “differential cutting” and preferably removes the hard, inelastic component of the atherosclerotic plaque. Currently, surgeons have moved away from the isolated use of RA and the purpose of its application is currently to modify the plaque to enable adequate balloon angioplasty and optimal stent implantation. This led to a significant improvement in procedural safety, a reduction in the number of concomitant complications and a positive effect on the long-term results of interventions. This article analyzes the world literature, the history of the development of the method from its invention to routine application in daily practice, and also examines current data on general principles, technical aspects and complications in the form of perforation of the target coronary artery, drill jam, the development of slow/no-reflow syndrome associated with the use of rotational atherectomy techniques. Coverage of the basic principles and techniques of RA for inexperienced specialists will help to avoid possible intraoperative complications, and with their development – to overcome and/or minimize their consequences, improving the quality of medical care.

References

  1. Tan T., Brown M., Lasala J. An evidence-based approach to the use of rotational and directional coronary atherectomy in the era of drug-eluting stents: when does it make sense? Catheter. Cardiovasc. Interv. 2008; 72: 650–62. DOI: 10.1002/ccd.21676
  2. Kuriyama N., Kobayashi Y., Yamaguchi M., Shibata Y. Usefulness of rotational atherectomy in preventing polymer damage of everolimus-eluting stent in calcified coronary artery. JACC. Cardiovasc. Interv. 2011; 4: 588–9. DOI: 10.1016/j.jcin.2010.11.017
  3. Bourantas C.V., Zhang Y.J., Garg S. et al. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: а patient-level pooled analysis of 7 contemporary stent trials. Heart. 2014; 100: 1158–64. DOI: 10.1136/heartjnl-2013-305180
  4. Barbato E., Shlofmitz E., Milkas A. et al. State of the art: evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses – from debulking to plaque modification., a 40-yearlong journey. EuroIntervention. 2017; 13: 696–705. DOI: 10.4244/eij-d-17-00473
  5. Lee M.S., Yang T., Lasala J. et al. Impact of coronary artery calcification in percutaneous coronary intervention with paclitaxel-eluting stents: twoyear clinical outcomes of paclitaxel-eluting stents in patients from the ARRIVE program. Catheter Cardiovasc. Interv. 2016; 88: 891–7. DOI: 10.1002/ccd.26395
  6. Tomey M.I., Kini A.S., Sharma S.K. Current status of rotational atherectomy. JACC. Cardiovasc. Interv. 2014; 7: 345–53. DOI: 10.1016/j.jcin. 2013.12.196
  7. Moussa I., Di Mario C., Moses J. et al. Coronary stenting after rotational atherectomy in calcified and complex lesions. Angiographic and clinical follow-up results. Circulation. 1997; 96: 128–36. DOI: 10.1161/01.cir.96.1.128
  8. Shimony A., Zahger D., Van Straten M. et al. Incidence, risk factors, management and outcomes of coronary artery perforation during percutaneous coronary intervention. Am. J. Cardiol. 2009; 104: 1674–7. DOI: 10.1016/j.amjcard.2009.07.048
  9. Fitzgerald P.J., Ports T.A., Yock P.G. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992; 86: 64–70. DOI: 10.1161/01.cir.86.1.64
  10. Takebayashi H., Kobayashi Y., Mintz G.S. et al. Intravascular ultrasound assessment of lesions with target vessel failure after sirolimus-eluting stent implantation. Am. J. Cardiol. 2005; 95: 498–502. DOI: 10.1016/j.amjcard.2004.10.020
  11. Abdel-Wahab M., Richardt G., Joachim Buttner H. et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial. JACC Cardiovasc. Interv. 2013; 6: 10–9.
  12. Sharma S.K., Tomey M.I., Teirstein P.S. et al. North American Expert Review of Rotational Atherectomy. Circ. Cardiovasc. Interv. 2019; 12: e007448. DOI: 10.1161/circinterventions.118.007448
  13. Zimarino M., Corcos T., Bramucci E., Tamburino C. Rotational atherectomy: A “survivor” in the drug-eluting stent era. Cardiovascular Revascularization Medicine. 2012; 13 (3): 185–92. DOI: 10.1016/j.carrev.2012.03.002
  14. Ahn S.S., Auth D., Marcus D.R., Moore W.S. Removal of focal atheromatous lesions by angioscopically guided high-speed rotary atherectomy. Preliminary experimental observations. J. Vasc. Surg. 1988; 7: 292–300.
  15. Fourrier J.L., Bertrand M.E., Auth D.C., Lablanche J.M., Gommeaux A., Brunetaud JM. Percutaneous coronary rotational angioplasty in humans: preliminary report. J. Am. Coll. Cardiol. 1989; 14: 1278–82.
  16. Hansen D.D., Auth D.C., Vracko R. et al. Rotational atherectomy in atherosclerotic rabbit iliac arteries. Am. Heart J. 1988; 115 (1 Pt 1): 160–5. DOI: 10.1016/0002-8703(88)90532-7
  17. Mintz G.S., Potkin B.N., Keren G. et al. Intravascular ultrasound evaluation of the effect of rotational atherectomy in obstructive atherosclerotic coronary artery disease. Circulation. 1992; 86: 1383–93. DOI: 10.1161/01.cir.86.5.1383
  18. Farb A., Roberts D.K., Pichard A.D. et al. Coronary artery morphologic features after coronary rotational atherectomy: insights into mechanisms of lumen enlargement and embolization. Am. Heart J. 1995; 129: 1058–67. DOI: 10.1016/0002-8703(95)90384-4
  19. Reifart N., Vandormael M., Krajcar M., Gohring S., Preusler W., Schwarz F. et al. Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser., Rotational Atherectomy., and Balloon Angioplasty Comparison (ERBAC) Study. Circulation. 1997; 96: 91–8.
  20. Barbato E., Carrie D., Dardas P. et al. European expert consensus on rotational atherectomy. EuroIntervention. 2015; 11: 30–6. DOI: 10.4244/eijv11i1a6
  21. Richardt G. ROTAXUS. A prospective, randomized trial of high-speed rotational atherectomy prior to paclitaxel-eluting stent implantation in complex calcified coronary lesions. Paper presented at the annual meeting of TransCatheter Therapeutics November 11, San Francisco, CA (USA); 2011.
  22. High-Speed Rotational Atherectomy Versus Modified Balloons Before Drug-Eluting Stent Implantation in Severely Calcified Coronary Lesions: The Randomized PREPARE-CALC Trial. Circ. Cardiovasc. Interv. 2018; 11 (10): e000040. DOI: 10.1161/HCV.0000000000000040. Erratum for: Circ. Cardiovasc. Interv. 2018; 11 (10): e007415. PMID: 30354641. DOI: 10.1161/HCV.0000000000000040
  23. Cao C., Ma Y., Li Q., Liu J., Zhao H., Lu M., Wang W. Comparison of bailout and planned rotational atherectomy for severe coronary calcified lesions. BMC Cardiovascular Disorders. 2020; 20 (1). DOI: 10.1186/s12872-020-01645-4
  24. Iannaccone M., Colangelo S., Colombo F., Garbo R. Rotational atherectomy with the new RotaPro system over RG3 guidewire in subadventitial retrograde highly calcified CTO PCI. Catheter. Cardiovasc. Interv. 2020; 95 (2): 242–4. DOI: 10.1002/ccd.28438
  25. Stompór T. Coronary artery calcification in chronic kidney disease: an update. World J. Cardiol. 2014; 6: 115–29. DOI: 10.4330/wjc.v6.i4.115
  26. Karimi Galougahi K., Mintz G.S., Karmpaliotis D., Ali Z.A. Zero-contrast percutaneous coronary intervention on calcified lesions facilitated by rotational atherectomy. Catheter. Cardiovasc. Interv. 2017; 90: E85–E89. DOI: 10.1002/ccd. 26999
  27. Sakakura K., Ito Y., Shibata Y., Okamura A., Kashima Y., Nakamura S., Ikari Y. Clinical expert consensus document on rotational atherectomy from the Japanese association of cardiovascular intervention and therapeutics. Cardiovascular Intervention and Therapeutics. 2020. DOI: 10.1007/s12928-020-00715-w
  28. Yabushita H., Bouma B.E., Houser S.L. et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002; 106: 1640–5. DOI: 10.1161/01.cir.0000029927.92825.f6
  29. Fujino A., Mintz G.S., Matsumura M. et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention. 2018; 13: e2182–9. DOI: 10.4244/eij-d-17-00962
  30. Mehanna E., Bezerra H.G., Prabhu D. et al. Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography. Circ. J. 2013; 77: 2334–40. DOI: 10.1253/circj.cj-12-1458
  31. Fitzgerald P.J., Ports T.A., Yock P.G. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992; 86: 64–70.
  32. Moussa I., Ellis S.G., Jones M., Kereiakes D.J., McMartin D., Rutherford B. et al. Impact of coronary culprit lesion calcium in patients undergoing paclitaxel-eluting stent implantation (a TAXUS-IV sub study). Am J. Cardiol. 2005; 96: 1242–7. DOI: 10.1016/j.amjcard.2005.06.064
  33. Mintz G.S., Popma J.J., Pichard A.D., Kent K.M., Satler L.F., Chuang Y.C. et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995; 91: 1959–65.
  34. Shimony A., Joseph L., Mottillo S., Eisenberg MJ. Coronary artery perforation during percutaneous coronary intervention: a systematic review and 324 Creative Cardiology. 2022; 16 (3) DOI: 10.24022/1997-3187-2022-16-3-313-325 Reviews meta-analysis. Can. J. Cardiol. 2011; 27: 843–50. DOI: 10.1016/j.cjca.2011.04.014
  35. Cohen B.M., Weber V.J., Relsman M., Casale A., Dorros G. Coronary perforation complicating ro-tational ablation: the U.S. multicenter experience. Cathet. Cardiovasc. Diagn. 1996; (suppl. 3): 55–9.
  36. Alekyan B.G. (Ed.) X-ray endovascular surgery. National guidelines: in 4 vols. Vol. 2. Ischemic heart disease. Moscow; 2017 (in Russ.).
  37. ROTABLATOR™ and ROTAPRO™ Rotational Atherectomy Systems. Available at: http://www.bostonscientific.com/content/gwc/en-US/products/atherectomy-systems/rotational-atherectomy-systems/rotapro.html (accessed 8 October 2019).
  38. Safian R.D., Feldman T., Muller D.W., Mason D., Schreiber T., Haik B. et al. Coronary angioplasty and Rotablator atherectomy trial (CARAT): immediate and late results of a prospective multicenter randomized trial. Catheter Cardiovasc. Interv. 2001; 53: 213–20.
  39. Whitlow P.L., Bass T.A., Kipperman R.M., Sharaf B.L., Ho K.K., Cutlip D.E. et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am. J. Cardiol. 2001; 87: 699–705.
  40. De Vos F.H., Meuffels D.E., de Mul M., Askari M., Ista E., Polinder S. et al. ROTATE study group. Study protocol ROTATE-trial: anterior cruciate ligament rupture., the influence of a treatment algorithm and shared decision making on clinical outcome – a cluster randomized controlled trial. BMC Musculoskelet Disord. 2022; 23 (1): 117. DOI: 10.1186/s12891-021-04867-5
  41. Naito R., Sakakura K., Wada H. et al. Comparison of long-term clinical outcomes between sirolimuseluting stents and paclitaxel-eluting stents following rotational atherectomy. Int. Heart J. 2012; 53: 149–53. DOI: 10.1536/ihj.53.149

About Authors

  • Karen V. Petrosian, Dr. Med. Sci., Head of Department; ORCID
  • Andrey V. Abrosimov, Cand. Med. Sci., Researcher; ORCID
  • Aslanbek V. Karaev, Cand. Med. Sci., Junior Researcher; ORCID
  • Alan B. Gurdzibeev, Postgraduate; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery