Ischemic heart disease as a consequence of epigenetic modifications and fetal programming in fetal growth retardation

Authors: Yarygina T.A., Gasanova R.M., Marzoeva O.V., Sypchenko E.V., Leonova E.I.

Company: 1 Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
2 RUDN University Moscow, Russian Federation
3 Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2023-17-2-189-202

For citation: Yarygina T.A., Gasanova R.M., Marzoeva O.V., Sypchenko E.V., Leonova E.I. Ischemic heart disease as a consequence of epigenetic modifications and fetal programming in fetal growth retardation. Creative Cardiology. 2023; 17 (2): 189–202 (in Russ.). DOI: 10.24022/1997-3187-2023-17-2-189-202

Received / Accepted:  10.05.2023 / 02.06.2023

Keywords: ischemic heart disease fetal growth retardation placental dysfunction epigenetics screening

Download
Full text:  

 

Abstract

The purpose of this review was to study Russian and foreign literature on the relationship between slow intrauterine growth of the fetus and the risk of coronary heart disease and metabolic disorders in adulthood. According to the world medical community, placental dysfunction and fetal growth retardation are fundamental in the development of structural and functional changes in the body. Using modern methods of echocardiography, it has become possible to detect early pathological changes in the heart and blood vessels in the case of antenatal hypoxia, which are predictors of diseases of the cardiovascular system in the future. Due to the possibility of studying the effect of epigenetic modifications on the fetus, the mechanisms of the relationship between slow intrauterine growth of the fetus and the risk of cardiovascular and endocrine diseases in adulthood are becoming clearer every year, there are opportunities to develop pathogenetic therapy, but at the moment there are many questions in the problem of growth retardation. fetus and its long-term effects are still open. However, professionals working with pediatric and adult patients need to be aware of the long-term impact of a person’s neonatal characteristics and family history on cardiovascular risk.

References

  1. Wang W., Hu M., Liu H., Zhang X., Li H., Zhou F. et al. Global burden of disease study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease. Cell Metabolism. 2021; 33 (10): 1943–56. DOI: 10.1016j.cmet.2021.08.005
  2. Healthcare in Russia. 2021. Statistical collection. Moscow; 2021 https://rosstat.gov.ru/storagemediabank/Zdravoohran-2021.pdf (accessed February 17, 2023) (in Russ.).
  3. Roth G.A., Mensah G.A., Johnson C.O., Addolorato G., Ammirati E., Baddour L.M. et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020; 76 (25): 2982–3021. DOI: 10.1016j.jacc.2020.11.010
  4. Karpov Yu.A., Barbarash O.L., Boschenko A.A., Kashtalap V.V., Kukharchuk V.V., Mironov V.M. et al. Eurasian Guidelines for the diagnostics and management of stable coronary artery disease (2020–2021). Eurasian Heart Journal. 2021; 3: 54–93 (in Russ.). DOI: 10.38109/2225-1685-2021-3-54-93
  5. The main indicators of maternal and child health, the activities of the child protection and obstetric service in the Russian Federation for 2020. Мoscow; 2021. http://www.demoscope.ru/weekly/2021/0909/biblio05.php (accessed February 17, 2023) (in Russ.).
  6. Osmond C., Barker D.J., Winter P.D., Fall C.H., Simmonds S.J. Early growth and death from cardiovascular disease in women. BMJ. 1993; 307 (6918): 1519–24. DOI: 10.1136/bmj.307.6918.1519
  7. Eriksson J.G., Forsén T., Tuomilehto J., Winter P.D., Osmond C., Barker D.J. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. 1999; 318 (7181): 427–31. DOI: 10.1136/bmj.318.7181.427
  8. Eriksson J.G., Forsén T., Tuomilehto J., Osmond C., Barker D.J. Early growth and coronary heart disease in later life: longitudinal study. BMJ. 2001; 322 (7292): 949–53. DOI: 10.1136/bmj.322.7292.949
  9. Leon D.A., Lithell H.O., Vâgerö D., Koupilová I., Mohsen R., Berglund L. et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915-29. BMJ. 1998; 317 (7153): 241–5. DOI: 10.1136/bmj.317.7153.241
  10. Fan Z., Zhang Z.X., Li Y., Wang Z., Xu T., Gong X. et al. Relationship between birth size and coronary heart disease in China. Ann. Med. 2010; 42 (8): 596–602. DOI: 10.3109/07853890.2010.514283 11. Stein C.E., Fall C.H., Kumaran K., Osmond C., Cox V., Barker D.J. Fetal growth and coronary heart disease in south India. Lancet. 1996; 348 (9037): 1269–73. DOI: 10.1016/s0140-6736(96)04547-3
  11. Rich-Edwards J.W., Stampfer M.J., Manson J.E., Rosner B., Hankinson S.E., Colditz G.A. et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ. 1997; 315 (7105): 396–400. DOI: 10.1136/bmj.315.7105.396
  12. Barker D.J. Developmental origins of adult health and disease. J. Epidemiol. Comm. Health. 2004; 58 (2): 114–5. DOI: 10.1136/jech.58.2.114
  13. Benyshek D.C. The “early life” origins of obesity-related health disorders: new discoveries regarding the intergenerational transmission of developmentally programmed traits in the global cardiometabolic health crisis. Am. J. Phys. Anthropol. 2013; 152 (Suppl. 57): 79–93. DOI: 10.1002/ajpa.22393
  14. Kane J.B., Harris K.M., Siega-Riz A.M. Intergenerational pathways linking maternal early life adversity to offspring birthweight. Soc. Sci. Med. 2018; 207: 89–96. DOI: 10.1016/j.socscimed.2018.04.049
  15. Rosenfeld C.S. (Ed.). The epigenome and developmental origins of health and disease. Acad. Press. 2016; 542. DOI: 10.1016/C2013-0-23131-7 17. Burton G.J., Fowden A.L., Thornburg K.L. Placental origins of chronic disease. Physiol. Rev. 2016; 96 (4): 1509–65. DOI: 10.1152/physrev.00029.2015
  16. Barker D.J., Thornburg K.L. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta. 2013; 34 (10): 841–5. DOI: 10.1016/j.placenta.2013.07.063
  17. Malacova E., Regan A., Nassar N., Raynes-Greenow C., Leonard H., Srinivasjois R. et al. Risk of stillbirth, preterm delivery, and fetal growth restriction following exposure in a previous birth: systematic review and meta-analysis. BJOG. 2018; 125 (2): 183–92. DOI: 10.1111/1471-0528.14906
  18. Myatt L., Thornburg K.L. Effects of prenatal nutrition and the role of the placenta in health and disease. Methods Mol. Biol. 2018; 1735: 19–46. DOI: 10.1007/978-1-4939-7614-0_2
  19. Dai Y., Zhao D., Chen C.K., Yap C.H. Echocardiographic assessment of fetal cardiac function in the uterine artery ligation rat model of IUGR. Pediatr. Res. 2021; 90 (4): 801–8. DOI: 10.1038/s41390-020-01356-8
  20. Bubb K.J., Cock M.L., Black M.J., Dodic M., Boon W.M., Parkington H.C. et al. Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J. Physiol. 2007; 578 (Pt. 3): 871–81. DOI: 10.1113/jphysiol.2006.121160
  21. Garcia-Canadilla P., de Vries T., Gonzalez-Tendero A., Bonnin A., Gratacos E., Crispi F. et al. Structural coronary artery remodelling in the rabbit fetus as a result of intrauterine growth restriction. PLoS One. 2019; 14 (6): e0218192. DOI: 10.1371/journal.pone.0218192
  22. Zohdi V., Lim K., Pearson J.T., Black M.J. Developmental programming of cardiovascular disease following intrauterine growth restriction: findings utilising a rat model of maternal protein restriction. Nutrients. 2014; 7 (1): 119–52. DOI: 10.3390/nu7010119
  23. Briscoe T.A., Rehn A.E., Dieni S., Duncan J.R., Wlodek M.E., Owens J.A., Rees S.M. Cardiovascular and renal disease in the adolescent guinea pig after chronic placental insufficiency. Am. J. Obstet. Gynecol. 2004; 191 (3): 847–55. DOI: 10.1016/j. ajog.2004.01.050
  24. Poelmann R.E., Gittenberger-de Groot A.C., Hierck B.P. The development of the heart and microcirculation: role of shear stress. Med. Biol. Eng. Comput. 2008; 46 (5): 479–84. DOI: 10.1007/s11517-008-0304-4
  25. Hogers B., DeRuiter M.C., Gittenberger-de Groot A.C., Poelmann R.E. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ. Res. 1997; 80 (4): 473–81. DOI: 10.1161/01.res.80.4.473
  26. Goenezen S., Rennie M.Y., Rugonyi S. Biomechanics of early cardiac development. Biomech. Model. Mechanobiol. 2012; 11 (8): 1187–204. DOI: 10.1007/s10237-012-0414-7
  27. Patey O., Carvalho J.S., Thilaganathan B. Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term. Ultrasound Obstet. Gynecol. 2019; 53 (5): 655–62. DOI: 10.1002/uog.19193
  28. Zanardo V., Visentin S., Trevisanuto D., Bertin M., Cavallin F., Cosmi E. Fetal aortic wall thickness: a marker of hypertension in IUGR children? Hypertens Res. 2013; 36 (5): 440–3. DOI: 10.1038/hr.2012.219
  29. Law C.M., Shiell A.W. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J. Hypertens. 1996; 14 (8): 935–41.
  30. Gomez-Roig M.D., Mazarico E., Valladares E., Guirado L., Fernandez-Arias M., Vela A. Aortic intima-media thickness and aortic diameter in small for gestational age and growth restricted fetuses. PLoS One. 2015; 10 (5): e0126842. DOI: 10.1371/journal.pone.0126842
  31. Crispi F., Bijnens B., Figueras F., Bartrons J., Eixarch E., Le Noble F. et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation. 2010; 121 (22): 2427–36. DOI: 10.1161/CIRCULATIONAHA.110.937995
  32. Sarvari S.I., Rodriguez-Lopez M., Nuñez-Garcia M., Sitges M., Sepulveda-Martinez A., Camara O. et al. Persistence of cardiac remodeling in preadolescents with fetal growth restriction. Circ. Cardiovasc. Imaging. 2017; 10 (1): e005270. DOI: 10.1161/CIRCIMAGING.116.005270
  33. Lillycrop K.A., Phillips E.S., Jackson A.A., Hanson M.A., Burdge G.C. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr. 2005; 135 (6): 1382–6. DOI: 10.1093/jn/135.6.1382
  34. FIGO Working Group On Best Practice In Maternal-Fetal Medicine; International Federation of Gynecology and Obstetrics. Best practice in maternal-fetal medicine. Int. J. Gynaecol. Obstet. 2015; 128 (1): 80–2. DOI: 10.1016/j. ijgo.2014.10.011
  35. Yajnik C.S., Deshpande S.S., Jackson A.A., Refsum H., Rao S., Fisher D.J. et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008; 51 (1): 29–38. DOI: 10.1007/s00125-007-0793-y
  36. Linabery A.M., Johnson K.J., Ross J.A. Childhood cancer incidence trends in association with US folic acid fortification (1986–2008). Pediatrics. 2012; 129 (6): 1125–33. DOI: 10.1542/peds.2011-3418
  37. Charles D., Ness A.R., Campbell D., Davey Smith G., Hall M.H. Taking folate in pregnancy and risk of maternal breast cancer. BMJ. 2004; 329 (7479): 1375–6. DOI: 10.1136/bmj.329.7479.1375
  38. Terstappen F., Spradley F.T., Bakrania B.A., Clarke S.M., Joles J.A., Paauw N.D. et al. Prenatal sildenafil therapy improves cardiovascular function in fetal growth restricted offspring of dahl salt-sensitive rats. Hypertension. 2019; 73 (5): 1120–7. DOI: 10.1161/HYPERTENSIONAHA.118.12454
  39. Groom K.M., Ganzevoort W., Alfirevic Z., Lim K., Papageorghiou A.T. et al. Clinicians should stop prescribing sildenafil for fetal growth restriction (FGR): comment from the STRIDER Consortium. Ultrasound Obstet. Gynecol. 2018; 52: 295–6. DOI: 10.1002/uog.19186
  40. Alsaied T., Omar K., James J.F., Hinton R.B., CrombleholmeT.M., Habli M. Fetal origins of adult cardiac disease: a novel approach to prevent fetal growth restriction induced cardiac dysfunction using insulin like growth factor. Pediatr. Res. 2017; 81 (6): 919– 25. DOI: 10.1038/pr.2017.18
  41. Botting K.J., Skeffington K.L., Niu Y., Allison B.J., Brain K.L., Itani N. et al. Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. Sci. Adv. 2020; 6 (34): eabb1929. DOI: 10.1126/sciadv.abb1929
  42. Spiroski A.M., Niu Y., Nicholas L.M., Austin-Williams S., Camm E.J., Sutherland M.R. et al. Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia. FASEB J. 2021; 35 (5): e21446. DOI: 10.1096/fj.202002705R
  43. Lees C.C., Stampalija T., Baschat A., da Silva Costa F., Ferrazzi E., Figueras F. et al. ISUOG Practice guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 2020; 56 (2): 298–312. DOI: 10.1002/uog.22134
  44. Clinical recommendations insufficient fetal growth requiring medical attention of the mother (fetal growth retardation). Russian Ministry of Health; 2022 (in Russ.).
  45. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins–Obstetrics and the Society for Maternal-Fetal Medicin. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet. Gynecol. 2019; 133 (2): e97–109. DOI: 10.1097/AOG.0000000000003070
  46. Royal College of Obstetricians and Gynecologists. The investigation and management of the small–for–gestational–age fetus. Green top guideline no. 31. 2013. 2nd ed. https://www. rcog.org.uk/globalassets/documents/guidelines/gtg_31.pdf (accessed September 10, 2022).
  47. Roberge S., Nicolaides K., Demers S., Hyett J., Chaillet N., Bujold E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2017; 216 (2): 110–20.e6. DOI: 10.1016/j.ajog.2016.09.076
  48. Haddad B., Winer N., Chitrit Y., Houfflin-Debarge V., ChauleurC., Bages K. et al. Heparin-Preeclampsia (HEPEPE) Trial Investigators. Enoxaparin and Aspirin Compared With Aspirin Alone to Prevent Placenta-Mediated Pregnancy Complications: A Randomized Controlled Trial. Obstet Gynecol. 2016; 128 (5): 1053–63. DOI: 10.1097/AOG.0000000000001673
  49. Groom K.M., McCowan L.M., Mackay L.K., Lee A.C., Said J.M., Kane S.C. et al. Enoxaparin for Prevention of Preeclampsia and Intrauterine Growth Restriction Trial Investigator Group. Enoxaparin for the prevention of preeclampsia and intrauterine growth restriction in women with a history: a randomized trial. Am. J. Obstet. Gynecol. 2017; 216 (3): 296.e1–14. DOI: 10.1016/j.ajog.2017.01.014
  50. Order of the Ministry of Health of the Russian Federation dated October 20, 2020 No. 1130n “On approval of the Procedure for the provision of medical care in the field of obstetrics and gynecology”. Annex 9. Registered with the Ministry of Justice of Russia on November 12, 2020. № 60869 Мoscow; 2020 (in Russ.).
  51. Yarygina T.A., Bataeva R.S. Methodology of 1st trimester screening for preeclampsia and intrauterine growth restriction according to Fetal Medicine Foundation algorithm (FMF). Ultrasound and Functional Diagnostics. 2018; 4: 77–88 (in Russ.).
  52. Yarygina T.A., Bataeva R.S. Performance of screening for smallfor-gestational age newborn at first trimester using the algorithm proposed by the Fetal Medicine Foundation. Ultrasound and Functional Diagnostics. 2019; 2: 16–32. DOI: 10.24835/1607- 0771-2019-2-16-32 (in Russ.).
  53. Khalid A., Byrne B.M. Aspirin in the prevention of preeclampsia: where are we now? Irish Med. J. 2018; 111 (3): 704.
  54. Zhou X., Wu Y., Ye L. Aspirin alleviates endothelial gap junction dysfunction through inhibition of NLRP3 inflammasome activation in LPS-induced vascular injury. Acta Pharm. Sin B. 2019; 9 (4): 711–23. DOI: 10.1016/j. apsb.2019.02.008
  55. Tan M.Y., Poon L.C., Rolnik D.L., Syngelaki A., de Paco Matallana C., Akolekar R. et al. Prediction and prevention of small-for-gestational-age neonates: evidence from SPREE and ASPRE. Ultrasound Obstet Gynecol. 2018; 52 (1): 52–9. DOI: 10.1002/uog.19077
  56. Yarygina T.A., Bataeva R.S., Gus A.I. Cerebral-placentaluterine ratio as a novel combined parameter of obstetric Doppler ultrasonography. Obstetrics and Gynecology. 2020; 10: 55–62. DOI: 10.18565/aig.2020.10.55-62 (in Russ.).
  57. Leonova E.I., Gasanova R.M. Intrauterine heart failure: assessment of the risk of perinatal death. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2022; 23 S3: 122.

About Authors

  • Tamara A. Yarygina, Cand. Med. Sci., Ultrasonic Diagnostics Physician of Bakoulev NMRC CS, Associate Professor of the Department of Ultrasound Diagnostics of the Faculty of Continuing Medical Education of the RUDN;ORCID
  • Rena M. Gasanova, Dr. Med. Sci., Cardiologist, Ultrasonic Diagnostics Physician, Head of the Perinatal Cardiology Center of the Bakoulev NMRC CS, Ultrasonic Diagnostics Physician Department of Ultrasound and Functional Diagnostics of Kulakov NMRC OGP;ORCID
  • Olga V. Marzoeva, Cand. Med. Sci., Ultrasonic Diagnostics Physician, Researcher; ORCID
  • Elena V. Sypchenko, Cand. Med. Sci., Ultrasonic Diagnostics Physician; ORCID
  • Elena I. Leonova, Ultrasonic Diagnostics Physician; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery