Complications after coronary artery bypass grafting – focus on genetic predictors (acute respiratory distress syndrome, acute kidney injury, neurological complications, atrial fibrillation)

Authors: Abramovskikh O.S., Belov D.V., Zotova M.A., Fokin A.A., Lukin O.P.

Company: 1 South Ural State Medical University, Chelyabinsk, Russian Federation
2 Federal Center for Cardiovascular Surgery, Chelyabinsk, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


For citation: Abramovskikh O.S., Belov D.V., Zotova M.A., Fokin A.A., Lukin O.P. Complications after coronary artery bypassgrafting – focus on genetic predictors (acute respiratory distress syndrome, acute kidney injury, neurological complications, atrial fibrillation). Creative Cardiology. 2023; 17 (2): 217–26 (in Russ.). DOI: 10.24022/1997-3187-2023-17-2-217-226

Received / Accepted:  17.04.2023 / 02.05.2023

Keywords: cardiac surgery complications genetic predictors cardiopulmonary bypass

Subscribe 🔒



The purpose of the review article is to present literature data on the role of genetic predictors of complications after cardiac surgery under cardiopulmonary bypass. Scientific publications were searched, including the PubMed, RSCI databases and the Google Scholar search engine, as well as references. Articles relevant to the purpose of the review were selected for the period from 1996 to 2022. Polymorphisms of two candidate genes APOA1 and IL-18 showed an association with the development of acute respiratory distress syndrome after heart surgery. The risk of neurological disorders after heart surgery has a genetic basis, including both polymorphic markers of individual genes (PAI-1) and intergenic interactions (CRP and IL-6). Evaluation of the genetic predisposition to postoperative acute kidney injury, as well as the survival of patients after heart surgery, showed a strong association of these conditions with a group of polymorphic markers: GRM7/LMCD1-AS1 and rs10262995 in BBS9, the CATT7 allele of the MIF gene, the LL genotype of the HMOX1 gene. Currently, the significance of genetic variability of the GRK5, NEURL, CAND2 genes, the T allele of Lys198Asn of the ET-1 gene has been shown in the development of acute kidney injury. As technological advances and cost reductions in nextgeneration sequencing technologies pave the way for greater availability of genomic testing, the introduction of genetic predisposition data will help improve risk stratification and reduce morbidity after cardiac surgery.


  1. Koksheneva I.V., Zakaraya I.T., Maloroeva A.I., Iraskhanov A.Sh. Issues of genetics and the risk of develop-ment of severe infectious complications and sepsis in cardiovascular surgery. Part 4. Clinical Physiology of Circulation. 2021; 18 (4): 261–72 (in Russ.). DOI: 10.24022/1814-6910-2021-18-4-261-272
  2. Tu J., Zhang B., Chen Y., Liang B., Liang D., Liu G., He F. Association of apolipoprotein A1 -75 G/A polymorphism with susceptibility to the development of acute lung injury after cardiopulmonary bypass surgery. Lipids Health Dis. 2013; 12: 172. DOI: 10.1186/1476-511X-12-172
  3. Chen S., Xu L., Tang J. Association of interleukin 18 gene polymorphism with susceptibility to the development of acute lung injury after cardiopulmonary bypass surgery. Tissue Antigens. 2010; 76 (3): 245–9. DOI: 10.1111/j.1399-0039.2010.01506.x
  4. Sirgo G., Pérez-Vela J.L., Morales P., Rey M.D., Vendrell J., Gutierrez C., Rello J. Association between 4G/5G polymorphism of the plasminogen activator inhibitor 1 gene with stroke or encephalopathy after cardiac surgery. Intensive Care Med. 2006; 32 (5): 668–75. DOI: 10.1007/s00134-006-0092-y
  5. Mathew J.P., Podgoreanu M.V., Grocott H.P., White W.D., Morris R.W., Stafford-Smith M. et al. Genetic variants in P-selectin and C-reactive protein influence susceptibility to cognitive decline after cardiac surgery. J. Am. Coll. Cardiol. 2007; 49 (19): 1934–42. DOI: 10.1016/j.jacc.2007.01.080
  6. Grocott H.P., White W.D., Morris R.W., Podgoreanu M.V., Mathew J.P., Nielsen D.M., Schwinn D.A., Newman M.F. Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke. 2005; 36 (9): 1854–8. DOI: 10.1161/01.STR.0000177482.23478.dc
  7. Stafford-Smith M., Li Y.J., Mathew J.P., Li Y.W., Ji Y., PhillipsBute B.G. et al. Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies susceptibility loci. Kidney Int. 2015; 88 (4): 823–32. DOI: 10.1038/ki.2015.161
  8. Stoppe C., Rex S., Goetzenich A., Kraemer S., Emontzpohl C., Soppert J. et al. Interaction of MIF family proteins in myocardial ischemia/reperfusion damage and their influence on clinical outcome of cardiac surgery patients. Antioxid. Redox Signal. 2015; 23: 865–79. DOI: 10.1089/ars.2014.6243
  9. Body S.C., Collard C.D., Shernan S.K., Fox A.A., Liu K.Y., Ritchie M.D. et al. Variation in the 4q25 chromosomal locus predicts atrial fibrillation after coronary artery bypass graft surgery. Circ. Cardiovasc. Genet. 2009; 2 (5): 499–506. DOI: 10.1161/CIRCGENETICS.109.849075
  10. Liu L., Zhang L., Liu M., Zhang Y., Han X., Zhang Z. GRK5 polymorphisms and postoperative atrial fibrillation following coronary artery bypass graft surgery. Sci. Rep. 2015; 5: 12768. DOI: 10.1038/srep12768
  11. Ahmed M., Rghigh A. Polymorphism in endothelin-1 gene: an overview. Curr. Clin. Pharmacol. 2016; 11: 191–210. DOI: 10.2 174/1574884711666160701000900
  12. Wei T., Song J., Xu M., Lv L., Liu C., Shen J., Huang Y. NEURL rs6584555 and CAND2 rs4642101 contribute to postoperative atrial fibrillation: a prospective study among Chinese population. Oncotarget. 2016; 7 (27): 42617–24. DOI: 10.18632/oncotarget.9422
  13. Koksheneva I.V., Zakaraya I.T. Genetic markers of risk of neurological complications in cardiac surgery. Part 3. Clinical Physiology of Circulation. 2021; 18 (3): 193–200 (in Russ.). DOI: 10.24022/1814-6910-2021-18-3-193-200
  14. Pepys M.B., Hirschfield G.M. C-reactive protein: a critical update. J. Clin. Invest. 2003; 111: 1805–12. DOI: 10.1172/JCI18921
  15. Kansas G.S. Selectins and their ligands: current concepts and contro-versies. Blood. 1996; 88: 3259–87.
  16. Kalesnik M.V. Genetic predictors of acute renal injury. Journal of Grodno State Medical University. 2022; 20 (5): 479–84 (in Russ.). DOI: 10.25298/2221-8785-2022-20-5-479-484
  17. Koksheneva I.V., Zakaraya I.T., Maloroeva A.I. Genetic determinants of the risk of acute kidney injury in cardiac surgery. Part 5. Clinical Physiology of Circulation. 2022; 1 (19): 47–56 (in Russ.). DOI: 10.24022/1814-6910-2022-19-1-47-56
  18. Kajal K., Chauhan R., Negi S.L., Gourav K.P., Panda P., Mahajan S., Sarna R. Intraoperative evaluation of renal resistive index with transesophageal echocardiography for the assessment of acute renal injury in patients undergoing coronary artery bypass grafting surgery: a prospective observational study. Ann. Card. Anaesth. 2022; 25 (2): 158–63. DOI: 10.4103/aca.aca_221_20
  19. Dalgic S.N., Yilmaz Aydogan H., Ozturk O., Pence S., Kanca Demirci D., Abaci O. et al. Effects of ECE-1b rs213045 and rs2038089 polymorphisms on the development of contrastinduced acute kidney injury in patients with acute coronary syndrome. J. Int. Med. Res. 2020; 48 (3): 1–10. DOI: 10.1177/0300060519886987
  20. Langworthy M., Zhou B., de Caestecker M., Moeckel G., Baldwin H.S. NFATc1 identifies a population of proximal tubule cell progenitors. J. Am. Soc. Nephrol. 2009; 20: 311–21. DOI: 10.1681/ASN.2008010094
  21. Bian Z.Y., Huang H., Jiang H., Shen D.F., Yan L., Zhu L.H. et al. LIM and cysteine-rich domains 1 regulates cardiac hypertrophy by targeting calcineurin/nuclear factor of activated T cells signaling. Hypertension. 2010; 55 (2): 257–63. DOI: 10.1161/HYPERTENSIONAHA.109.135665
  22. Zaghloul N.A., Katsanis N. Mechanistic insights into BardetBiedl syndrome, a model ciliopathy. J. Clin. Invest. 2009; 119: 428–37. DOI: 10.1172/JCI37041
  23. Averdunk L., Bernhagen J., Fehnle K., Surowy H., Lüdecke H.J., Mucha S. et al. The Macrophage Migration Inhibitory Factor (MIF) promoter polymorphisms (rs3063368, rs755622) predict acute kidney injury and death after cardiac surgery. J. Clin. Med. 2020; 9 (9): 2936. DOI: 10.3390/jcm9092936
  24. Bae S.-C., Lee Y.H. Circulating macrophage migration inhibitory factor levels and its polymorphisms in systemic lupus erythematosus: A meta-analysis. Cell. Mol. Biol. 2017; 63: 74–9. DOI: 10.14715/cmb/2017.63.10.12
  25. Leaf D.E., Body S.C., Muehlschlegel J.D., McMahon G.M., Lichtner P., Collard C.D. et al. Length polymorphisms in heme oxygenase-1 and AKI after cardiac surgery. J. Am. Soc. Nephrol. 2016; 27 (11): 3291–7. DOI: 10.1681/ASN.2016010038
  26. Gudbjartsson D.F., Arnar D.O., Helgadottir A., Gretarsdottir S., Holm H., Sigurdsson A. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007; 448: 353–7. DOI: 10.1161/CIRCGENETICS.109.849075
  27. Kolek M.J., Muehlschlegel J.D., Bush W.S., Parvez B., MurrayK.T., Stein C.M. et al. Genetic and clinical risk prediction model for postoperative atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2015; 8 (1): 25–31. DOI: 10.1161/CIRCEP.114.002300
  28. Hendrickx J.O., van Gastel J., Leysen H., Santos-Otte P., Premont R.T., Martin B., Maudsley S. GRK5 – a functional bridge between cardiovascular and neurodegenerative disorders. Front. Pharmacol. 2018; 9: 1484. DOI: 10.3389/fphar.2018.01484
  29. Liggett S.B., Cresci S., Kelly R.J., Syed F.M., Matkovich S.J., Hahn H.S. et al. 2nd. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat. Med. 2008; 14 (5): 510–7. DOI: 10.1038/nm1750
  30. Kertai M.D., Li Y.W., Li Y.J., Shah S.H., Kraus W.E., Fontes M.L. et al. G protein-coupled receptor kinase 5 gene polymorphisms are associated with postoperative atrial fibrillation following coronary artery bypass graft surgery in patients receiving betablockers. Circ. Cardiovasc. Genet. 2014; 7 (5): 625–33.
  31. Lazurova Z., Habalova V., Mitro P. Association of polymorphisms in endothelin-1 and endothelin receptor a genes with vasovagal syncope. Physiol. Res. 2022; 71 (1): 93–101. DOI: 10.33549/physiolres.934689
  32. Qing P., Li X.L., Zhang Y., Li Y.L., Xu R.X., Guo Y.L. et al. Association of big endothelin-1 with coronary artery calcification. PLoS One. 2015; 10 (11): 0142458. DOI: 10.1371/journal.pone.0142458
  33. Sinner M.F., Tucker N.R., Lunetta K.L., Ozaki K., Smith J.G., Trompet S. et al. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation. 2014; 130: 1225–35. DOI: 10.1161/CIRCULATIONAHA.114.009892
  34. Pal R., Ramdzan Z.M., Kaur S., Duquette P.M., Marcotte R., Leduy L. et al. CUX2 Functions As an accessory factor in the repair of oxidative DNA damage. J. Biol. Chem. 2015; 290: 22520–31. DOI: 10.1074/jbc.M115.651042
  35. Koksheneva I.V., Zakaraya I.T. Perioperative genomics: methodological approaches, genetic variability andresponse to surgical injury. Part 1. Clinical Physiology of Circulation. 2021; 18 (1): 5–15 (in Russ.). DOI: 10.24022/1814-6910-2021-18-1-5-15

About Authors

  • Olga S. Abramovskikh, Dr. Med. Sci., Associate Professor, Chief of Chair; ORCID
  • Dmitriy V. Belov, Cand. Med. Sci., Associate Professor of Department of Hospital Surgery of SUSMU, Cardiovascular Surgeon FCCS; ORCID
  • Mariya A. Zotova, Cand. Biol. Sci., Senior Researcher; ORCID
  • Aleksey A. Fokin, Dr. Med. Sci., Professor, Chief of Chair; ORCID
  • Oleg P. Lukin, Dr. Med. Sci., Professor of Department of Hospital Surgery of SUSMU, Chief Physician FCCS, ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery