Synthetic and biological valve-containing conduits with a multifunctional coating for surgical treatment of aortic aneurysm: results and prospects

Authors: Salokhedinova R.R.1, Orlova A.A.1, Britikov D.V.1, Chashchin I.S.1 2, Ivanova N.M.3, Kurilov A.D.1

Company: 1 Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
2 Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russian Federation
3 Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2024-18-4-470-482

For citation: Salokhedinova R.R., Orlova A.A., Britikov D.V. Chashchin I.S., Ivanova N.M., Kurilov A.D. Synthetic and biological valve-containing conduits with a multifunctional coating for surgical treatment of aortic aneurysm: results and prospects. Creative Cardiology. 2024; 18 (4): 470–482 (in Russ.). DOI: 10.24022/1997-3187-2024-18-4-470-482

Received / Accepted:  30.10. 2024 / 02.12.2024

Keywords: vascular prostheses gelatin chitosan biocompatibility durability thromboresistance zero surgical porosity tightness multifunctional coating

Download
Full text:  

 

Abstract

The problem of increasing the biocompatibility of conduits can be solved by applying multifunctional coatings to the surface of products. The purpose of coating is to reduce surgical porosity (in the case of synthetic conduit), to ensure thrombo-resistant properties, resistance to infection, and the formation of neointima.

The aim of the study is an experimental in vitro study of synthetic and biological valve–containing conduits with a multifunctional coating.

Material and methods. Synthetic woven corrugated prostheses made of polyethylene terephthalate (Perouse Medical, France) and pig aorta (as a model of aortic allogeneic tissue) were used as coating samples. A gelatin-based coating with antimicrobial, anticoagulant, and antiplatelet drugs was applied to the tubular part of the synthetic conduit. Plasticizer – glycerin PK-94 in the polymer ratio : glycerin 1 : (0.4–0.6). Chitosan coating was applied to pig aorta samples from an aqueous 1% chitosan solution in carbonic acid under pressure.

Infrared spectra of the surface of the coated and uncoated samples, micrographs of the surface of the samples by scanning electron microscopy were obtained. The mechanical properties of the samples on a bursting machine are investigated.

Results. The gelatin-based coating improves the surface properties of the material. Synthetic fibers become smoother, more compact, natural pores are filled with a biopolymer, the possibility of bleeding is eliminated, and micro-damage to the fibers is closed. The coating allows you to create a smooth surface for blood flow and, in combination with immobilized drugs, significantly improves the thrombosis-resistant properties of the conduit.

The use of a chitosan-based coating on biological tissue makes it possible to neutralize tears, superficial damage to collagen fibrils that occurred during mechanical processing of biological tissue.

Conclusion. Biological coatings for valve-containing conduits developed at Bakoulev National Medical Research Center for Cardiovascular Surgery make it possible to create a smooth surface with high thrombo-resistant properties and zero surgical porosity, firmly adhered to the vessel wall. The mechanical properties of synthetic conduits after coating remain virtually unchanged, the application of chitosan to biological conduits significantly strengthens the fabric.

References

  1. Hiratzka L.F., Bakris G.L., Beckman J.A., Bersin R.M., Carr V.F., Casey D.E. et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/ SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J. Am. Coll. Cardiol. 2010; 55: e27–e129. DOI: 10.1016/j.jacc.2010.02.010
  2. Isselbacher E.M., Preventza O., Black Iii H.J., Augoustides J.G., Beck A.W., Bolen M.A. et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease. J. Am. Coll. Cardiol. 2022; 80 (24): e223–e393. DOI: 10.1016/j.jacc.2022.08.004
  3. Wu J., Zafar M.A., Liu Y., Chen J.F., Li Y., Ziganshin B.A. et al. Fate of the unoperated ascending thoracic aortic aneurysm: three-decade experience from the Aortic Institute at Yale University. Eur. Heart J. 2023; 44 (43): 4579–4588. DOI: 10.1093/eurheartj/ehad148
  4. Olsson C., Thelin S., Ståhle E., Ekbom A., Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006; 114: 2611–2618. DOI: 10.1161/CIRCULATIONAHA.106.630400
  5. Kalinin R.E., Suchkov I.A., Gerasimov A.A., Pshennikov A.S., Mnikhovich M.V. Prognostic value of biochemical markers of endothelial dysfunction in reconstructive surgery of the main arteries (experimental study). In the collection: Endothelial dysfunction: experimental and clinical studies. Materials of the IX International Scientific and Practical Conference. Vitebsk: Vitebsk State Medical University; 2016: 135– 137 (in Russ.).
  6. Goldfinger J.Z., Halperin J.L., Marin M.L., Stewart A.S., Eagle K.A., Fuster V. Thoracic aortic aneurysm and dissection. J. Am. Coll. Cardiol. 2014; 64 (16): 1725–1739. DOI: 10.1016/j.jacc.2014.08.025
  7. Krivkina E.O., MatveevaV.G.,Antonova L.V.Vascular prostheses with antimicrobialcoating: experimental developments and implementation into clinical practice. Complex Problems of Cardiovascular Diseases. 2021; 10 (3): 90–102 (in Russ.). DOI: 10.17802/2306-1278-2021-10-3-90-102
  8. Powell T.W., Burnham S.J., Johnson G.Jr. A passive system using rifampin to create an infection-resistant vascular prosthesis. Surgery. 1983; 94 (5): 765–769.
  9. Mouriño V., Cattalini J.P., Boccaccini A.R. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J. R. Soc. Interface. 2012; 9 (68): 401–419. DOI: 10.1098/rsif.2011.0611
  10. Schneider F., O’Connor S., Becquemin J.P. Efficacy of collagen silver-coated polyester and rifampin-soaked vascular grafts to resist infection from MRSA and Escherichia coli in a dog model. Ann. Vasc. Surg. 2008; 22 (6): 815–21. DOI: 10.1016/j.avsg.2008.06.011
  11. Aranaz I., Alcántara A.R., Civera M.C., Arias C., Elorza B., Heras Caballero A., Acosta N. Chitosan: an overview of its properties and applications. Polymers. 2021; 13 (19): 3256. DOI: 10.3390/polym13193256
  12. Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006; 31: 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001
  13. Nilsen-Nygaard J., Strand S.P., Varum K.M., Draget K.I., Nordgard C.T. Chitosan: gels and interfacial properties. Polymers. 2015; 7: 552–579. DOI: 10.3390/polym7030552
  14. Chaschin I.S., Sinolits M.A., Badun G.A., Chernysheva M.G., Anuchina N.M., Krasheninnikovet S.V. et al. Chitosan/hyaluronic acid polyanion bilayer applied from carbon acid as an advanced coating with intelligent antimicrobial properties for improved biological prosthetic heart valves. Int. J. Biol. Macromol. 2022; 222: 2761–2774. DOI: 10.1016/j.ijbiomac.2022.10.056
  15. Perepelkin E.I., Sinolits M.A., Badun G.A, Chernysheva M., Anuchina N.M., Abramchuk S.S. et al. Composite chitosan-based nanoparticles as a basis for innovative antimicrobial coating for bioprosthesis: preparation and application using carbonic acid as a “green” self-neutralizing solvent. Eur. Polym. J. 2023; 193: 112104. DOI: 10.1016/j.eurpolymj.2023.112104
  16. Kashin A.S., Ananikov V.P. A SEM study of nanosized metal films and metal nanoparticles obtained by magnetron sputtering. Russ. Chem. Bull. 2011; 60: 2602–2607. DOI: 10.1007/s11172-011-0399-x
  17. Volkenstein M.V., Gribov L.A., Elyashevich M.A., Stepanov B.I. Vibrations of molecules. 2nd ed. M.: Science(Main edition of the physical and mathematical literature); 1972 (in Russ.).
  18. Sverdlov L.M., Kovner M.A., Krainov E.P. Vibrational spectra of polyatomic molecules. Moscow: Science; 1970 (in Russ.).
  19. Santos M.H., Silva R.M., Dumont V.C., Neves J.S., Mansur H.S., Heneine L.G.D. et al. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013; 33: 790–800. DOI: 10.1016/j.msec.2012.11.003
  20. Silverstein R.M., Bassler G.C. Spectrometric identification of organic compounds. J. Chem. Educ. 1962; 39: 546–553.
  21. Paez J., Herrera E., Sanmartin A. et al. Comparison of the mechanical behaviors of biological tissues subjected to uniaxial tensile testing: pig, calf and ostrich pericardium sutured with Gore-Tex. Biomaterials. 2003; 24: 1671–1679. DOI: 10.1016/s0142-9612(02)00536-7
  22. Salokhedinova R.R., Novikova S.P., Orlova A.A., Tsygankov Yu.M., Sergeev A.A., Afanasyeva E.A. Evaluation of thromboresistance of blood vessel prostheses with modifying heparin coating. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2023; 24 (4): 337–346 (in Russ.). DOI: 10.24022/1810-0694-2023-24-4-337-346
  23. Babenko S.I., Zhdanova I.A., Soboleva N.N. and others. Long-term results of prosthetics of the aortic valve with a xenopericardial skeleton prosthesis “BioLab” of small diameter. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (3): 306–312 (in Russ.). DOI: 10.24022/0236-2791-2023-65-3-306-311
  24. Titov D.A. Repeated operations on the aortic valve and ascending aorta: causes, surgical treatment. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (6): 646–660 (in Russ.). DOI: 10.24022/0236-2791-2023-65-6-646-660
  25. Xue Y., Xiao H., Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 2015; 16(2): 3626–3655. DOI: 10.3390/ijms16023626
  26. Kim K., Luu Y.K., Chang C., Fang D., Hsiao B.S., Chu B. et al. Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Control. Release. 2004; 98 (1): 47–56. DOI: 10.1016/j.jconrel.2004.04.009
  27. Liu K.S., Lee C.H., Wang Y.C., Liu S.J. Sustained release of vancomycin from novel biodegradable nanofiberloaded vascular prosthetic grafts: in vitro and in vivo study. Int. J. Nanomedicine. 2015; 10: 885–891. DOI: 10.2147/IJN.S78675
  28. Andercou O., Marian D., Olteanu G., Stancu B., Cucuruz B., Noppeney T. Complex treatment of vascular prostheses infections. Medicine (Baltimore). 2018; 97 (27): e11350. DOI: 10.1097/MD.0000000000011350
  29. Menger M.D., Hammersen F., Messmer K. In vivo assessment of neovascularization and incorporation of prosthetic vascular biografts. Thorac. Cardiovasc. Surg. 1992; 40 (1): 19–25. DOI: 10.1055/s-2007-1020105
  30. Shadanov A.A., Zhuravleva I.Yu., Samoylova L.M., Timchenko Т.P., Vladimirov S.V., Karpova E.V., Luchnicov N.E., Sirota D.A., Edemskiy A.G., Bogachev-Prokofiev A.V., Chernyavskiy A.M. Evaluation of the original sealant with antibacterial effect for synthetic vascular grafts. Patologiya Krovoobrashcheniya i Kardiokhirurgiya. 2023; 27 (1): 38–46 (in Russ.). DOI: 10.21688/1681-3472-2023-1-38-46
  31. Zakharov A.S., Kalinin R.E., Suchkov I.A., Korotkova N.V., Kovalev S.A., Mzhavanadze N.D. Modern possibilities of bioengineering in the creation of vascular grafts. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2022; 64 (3): 265–272 (in Russ.). DOI: 10.24022/0236-2791-2022-64-3-265-272

About Authors

  • Regina R. Salokhedinova, Cand. Econ. Sc., Head of Laboratory; ORCID
  • Aleksandra A. Orlova, Cand. Chem. Sci., Leading Technologist; ORCID
  • Dmitry V. Britikov, Dr. Med. Sci., Leading Research Associate; ORCID
  • Ivan S. Chashchin, Cand. Phys. Math. Sci., Senior Research Associate; ORCID
  • Nina M. Ivanova, Cand. Tech. Sci., Junior Research Associate; ORCID
  • Aleksey D. Kurilov, Laboratory Assistant

Chief Editor

Elena Z. Golukhova, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery


Sort by