Endothelial dysfunction and oxidant stress: the role in cardiovascular pathology

Authors: N.I. Bulaeva, E.Z. Golukhova

Company: A.N. Bakoulev Scientific Center for Cardiovascular Surgery of Russian Academy of Medical Sciences

For citation: Bulaeva NI, Golukhova EZ. Endothelial dysfunction and oxidant stress: the role in cardiovascular pathology. Kreativnaya kardiologiya. 2013; 1: 14-22 (in Russian)

Keywords: endothelial dysfunction oxidative stress nitric oxide reactive oxygen species

Полнотекстовая версия:  



The results of numerous studies of last decades have confirmed the key role of endothelium in regulation of vascular homeostasis. The normal endothelial function involves the balance of processes such as vasoconstriction and vasodilation, production of factors of inflammation and vessel proliferation, participation in blood clotting and vessel remodeling. It is known that with increasing oxidative stress and accumulation of free radical combinations the endothelial function can impair, atherosclerosis progress as well as other cardiovascular complications [1, 2, 3, 4]. The purpose of this review has been to summarize and analyse a number of works relating to endothelial dysfunction, oxidative stress and their obvious role in development of cardiovascular pathology [5]


1. Cai H., Harrison D.G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 2000; 87: 840–4. 2. Keaney J.F., Vita J.A. Atherosclerosis, oxidative stress, and antioxidant protection in endothelium-derived relaxing factor action. Prog. Cardiovasc. Dis. 1995; 38: 129–54. 3. Ohara Y., Peterson T.E., Harrison D.G. Hypercholesterolemia increases endothelial superoxide anion production. J. Clin. Invest. 1993; 91: 2546–51. 4. Heitzer Th., Schlinzig T., Krohn K. et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001; 104: 2673–8. 5. Radenkovic M., Stojanovic M., Potpara T., Prostran M. Therapeutic approach in the improvement of endothelial dysfunction: the current state of the art. BioMed. Research International. 2013; Article ID 750126. 12 p. 6. Luscher T.F., Barton M. Biology of the endothelium. Clin. Cardiol. 1997; 20: 3–10. 7. Taddei S., Ghiadoni L., Virdis A., Versari D., Salvetti A. Mechanisms of endothelial dysfunction: clinical significance and pre ventive non-pharmacological therapeutic strategies. Curr. Pharm. Des. 2003; 9: 2385–402. 8. Versari D., Daghini E., Virdis A. et al. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care. 2009; 32. S.5314–21. 9. Lin Ch.-P., Lin F.-Y., Huang P.-H. et al. Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen species and inflammation. BioMed. Research. International. Available at: http://dx.doi.org/10.1155/2013/845037. 10. Kinlay S., Libby P., Ganz P. Endothelial function and coronary artery disease. Curr. Opin. Lipidol. 2001; 12: 383–9. 11. Mather K., Anderson T.J., Verma S. Insulin action in the vasculature: physiology and pathophysiology. J. Vasc. Res. 2001; 38: 415–22. 12. Verma S., Anderson T.J. Fundamentals of endothelial function for the clinical cardiologist. Circulation. 2002; 105: 546–9. 13. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109: 27–32. 14. Schachinger V., Britten M.B., Zeiher A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000; 101: 1899–906. 15. Deanfield J. E., Halcox J. P., Rabelink T.J. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007; 115: 1285–95. 16. Drexler H. Factors involved in the maintenance of endothelial function. Am. J. Cardiol. 1998; 82: 3–4. 17. Esper R.J., Nordaby R.A., Vilarino J.O., Paragano A. Endothelial dysfunction: a comprehensive appraisal. Cardiovasc. Diabetol. 2006; 54: 1475–2840. 18. Kawano H., Do Y.S., Kawano Y. et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblast. Circulation. 2000; 101: 1130–7. 19. Sowers J.R. Hypertension, angiotensin II, and oxidative stress. N. Engl. J. Med. 2002; 346: 1999–2001. 20. Kinlay S., Behrendt D., Wainstain M. et al. The role of endothelin-1 in the constriction of human atherosclerotic coronary arteries. Circulation. 2001; 104: 1114–8. 21. Ross R. Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 1999; 340: 115–26. 22. Behrendt D., Ganz P. Endothelial function: from vascular biology to clinical applications. Am. J. Cardiol. 2002; 90: 40–8. 23. Cooke J.P. Does ADMA cause endothelial dysfunction? Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2032–7. 24. Rubbo H., Trostchansky A., Botti H. et al. Interactions of nitric oxide and peroxynitrite with low-density lipoprotein. Biol. Chem. 2002; 383: 547–52. 25. Бокерия Л.А., Голухова Е.З. (ред.) Клиническая кардиология: диагностика и лечение. В 3 т. М.: НЦССХ им. А.Н. Бакулева РАМН; 2011. Т. 3. 26. Steinberg D., Witztum J.L. Is the oxidative modification hypothesis relevant to human atherosclerosis? Circulation. 2002; 105: 2107–11. 27. Ehara S., Ueda M., Naruko T. et al. Elevated levels of low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001; 103: 1955–60. 28. Endres M., Laufs U., Huang Z. et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA. 1998; 95: 8880–5. 29. Pattillo Ch.B., Bir Sh., Rajaram V., Kevil Ch.G. Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases. Cardiovasc. Res. 2011; 89: 533–41. 30. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials Cholesterol Treatment Trialists’ (CTT) Collaborators. Lancet. 2012; 380: 581–90. 31. Forstermann U., Sessa W.C. Nitric oxide synthases: regulation and function. Eur. Heart J. 2012; 33: 829–37. 32. Nickening G., Harrison D.G. The AT1-type angiotensin receptor in oxidative stress and atherogenesis. Part I: oxidative stress and atherogenesis. Circulation. 2002; 105: 393–6. 33. Givertz M.M., Sawyer D.B., Colucci W.S. Antioxidants and myocardial contractility. Illuminating the «dark side» of β-adrenergic receptor activation. Circulation. 2001; 103: 782–3. 34. Sharma А., Bernatchez P.N., Haan J.B. Targeting endothelial dysfunction in vascular complications associated with diabetes. Int. J. Vasc. Med. 2012; ID 750126. 12. 35. Janeway C.A., Jr., Medzhitov R. Innate immune recognition. Ann. Rev. Immunol. 2002; 20: 197–216. 36. Peiser L., Mukhopadhyay S., Gordon S. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 2002; 14: 123–8. 37. Ludmer P.L., Selwyn A.P., Shook T.L., Wayne R.R. et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerosis coronary arteries. N. Engl. J. Med. 1986; 315: 1046–51. 38. Уразовская И.Л. Взаимосвязь функционального состояния эндотелия и течения острого инфаркта миокарда с подъемом сегмента ST: дис. … канд. мед. наук. М.; 2010: 118.

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery