Influence of polymorphism of genes encoding products of lipid metabolism on the effectiveness of statins in patients with stable coronary artery disease

Authors: Koksheneva I.V., Temirbulatova T.R., Grishenok A.V.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2024-18-1-44-58

For citation: Koksheneva I.V., Temirbulatova T.R., Grishenok A.V. Influence of polymorphism of genes encoding products of lipid metabolism on the effectiveness of statins in patients with stable coronary artery disease. Creative Cardiology. 2024; 18 (1): 44–58 (in Russ.). DOI: 10.24022/1997-3187-2024-18-1-44-58

Received / Accepted:  10.01.2024 / 06.02.2024

Keywords: atherosclerosis lipid-lowering therapy effectiveness of statin therapy genetic variability genetic polymorphism of apolipoprotein E



Subscribe 🔒

 

Abstract

Material and methods. The study included 84 patients with stable CAD who underwent elective percutaneous coronary intervention (PCI). 23 single nucleotide polymorphisms (SNPs) of 12 candidate genes involved in the regulation of lipid metabolism were genotyped: ABCA1 (rs2740483; rs1800977; rs1800977), LPL (rs268; rs285; rs328; rs1801177; rs2083637; rs10096633 ), PCSK9 (rs505151). APOA5 (rs964184), APOC3 (rs2854116; rs4520; rs5128), APOE (rs405509; rs429358+rs7412), LPA (rs1853021), PON1 (rs854560; rs662), TRIB1 (rs29540029), LRP8 (rs5174 ), ANGPTL3 (rs10889353), XKR6-AMAC1L2 (rs7819412). A lipid profile study was carried out initially before the PCI procedure, 1 month, 3 months, 6 months, 1 year after PCI and at longterm follow-up visits. The distribution of genotypes and alleles of selected candidate genes was analyzed in two groups: group 1 – 52 patients who achieved target lipid levels while taking statins; group 2 – 32 patients who failed to achieve target lipid levels while taking statins.

Results. Associations of carriage of two SNPs were identified: APOE rs405509 (CC genotype) (odds ratio (OR) 2.05 95% CI 1.0–5.28; p=0.05) and APOE (rs429358+rs7412) allele ε4 (OR 3.47 95% CI 1.28–9.42; p=0.01) and genotypes ε3ε4+ε4ε4 (OR 3.58 95% CI 1.19–10.73; p=0.01) with insufficient effectiveness of therapy statins.

Conclusion. The study confirmed the contribution of genetic factors to the reduction in the effectiveness of statin therapy in patients with CAD. The results indicate that in addition to standard statin therapy, in patients with CAD who are carriers of the risk alleles – ε4 APOE (rs429358+rs7412) and genotype CC APOE rs405509, it is necessary to develop individual optimal lipid-lowering therapy regimens to reduce cardiovascular risk caused by genetically determined abnormal lipoprotein metabolism.

References

  1. Lamprecht D.G., Jr., Shaw P.B., King J.B., Hogan K.N., Olson K.L. Trends in high-intensity statin use and low-density lipoprotein cholesterol control among patients enrolled in a clinical pharmacy cardiac risk service. J. Clin. Lipidol. 2018; 12: 999–1007. DOI: 10.1016/j.jacl.2018.04.007
  2. Noh S., Mai K., Shaver M., Yong S., Mostaghimi M., Oh G., Radwan M.M. Emerging сholesterol modulators for atherosclerotic cardiovascular disease. Am. J. Med. Sci. 2022; 363 (5): 373–387. DOI: 10.1016/j.amjms.2021.12.011
  3. Khan S.U., Khan M.U., Virani S.S., Khan M.S., Khan M.Z., Rashid M. et al. Efficacy and safety for the achievement of guideline-recommended lower low-density lipoprotein cholesterol levels: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2022; 28 (18): 2001–2009. DOI: 10.1093/eurjpc/zwaa093
  4. Laffin L.J., Bruemmer D., Garcia M., Brennan D.M., McErlean E., Jacoby D.S. et al. Comparative еffects of low-dose rosuvastatin, placebo, and dietary supplements on lipids and inflammatory biomarkers. J. Am. Coll. Cardiol. 2023; 81 (1): 1–12. DOI: 10.1016/j.jacc.2022.10.013
  5. Leusink M., Onland-Moret N.C., de Bakker P.I., de Boer A., Maitland-van der Zee A.H. Seventeen years of statin pharmacogenetics: a systematic review. Pharmacogenomics. 2016; 17: 163–180. DOI: 10.2217/pgs.15.158 6. Arrigoni E., Del Re M., Fidilio L., Fogli S., Danesi R., Di Paolo A. Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins. Int. J. Mol. Sci. 2017; 18 (1): 104–129. DOI: 10.3390/ijms18010104
  6. Aronov D.M., Arabidze G.G., Akhmedzhanov N.M., Balakhonova T.V., Boytsov S.A., Bubnova M.G. et al. Diagnosis and correction of lipid metabolism disorders for the purpose of prevention and treatment of atherosclerosis Russian recommendations. V revision. Moscow; 2012 (in Russ.).
  7. Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Russian Journal of Cardiology. 2020; 25 (5): 3826 (in Russ.). DOI: 10.15829/1560-4071-2020-3826
  8. Postmus I., Warren H.R., Trompet S., Arsenault B.J., Avery C.L., Bis J.C. et al. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins. J. Med. Genet. 2016; 53: 835–845. DOI: 10.1136/jmedgenet-2016-103966
  9. Miyaki K., Matsubara A., Nishiwaki A., Tomida K., Morita H., Yoshida M., Ogura Y. Pitavastatin attenuates leukocyte-endothelial interactions induced by ischemia-reperfusion injury in the rat retina. Curr. Eye Res. 2009; 34: 10–17. DOI: 10.1080/02713680802579196
  10. Mancini G.B.J., Tashakkor A.Y., Baker S., Bergeron J., Fitchett D., Frohlich J. et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian working group consensus update. Can. J. Cardiol. 2013; 29: 1553–1568. DOI: 10.1016/j.cjca.2013.09.023
  11. Sirtori C.R., Mombelli G., Triolo M., Laaksonen R. Clinical response to statins: mechanism (s) of variable activity and adverse effects. Ann. Med. 2012; 44: 419–432. DOI: 10.3109/07853890.2011.582135
  12. Verschuren J.J.W., Trompet S., Wessels J.A.M., Guchelaar, H.J., de Maat M.P.M., Simoons M.L., Jukema J.W. A systematic review on pharmacogenetics in cardiovascular disease: Is it ready for clinical application? Eur. Heart J. 2012; 33: 165–175. DOI: 10.1093/eurheartj/ehr239
  13. Alfonsi J.E., Hegele R.A., Gryn S.E. Pharmacogenetics of lipid-lowering agents: precision or indecision medicine? Curr. Atheroscler. Rep. 2016; 18 (5): 24. DOI: 10.1007/s11883- 016-0573-6
  14. Lin Y., Yang Q., Liu Zh., Su B., Xu F., Li Y., Kang J., Zhou Zh. Relationship between Apolipoprotein E genotype and lipoprotein profile in patients with coronary heart disease. Molecules. 2022; 27: 1377–1391. DOI: 10.3390/MOLECULES27041377
  15. Phillips M.C. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life. 2014; 66: 616–623. DOI: 10.1002/iub.1314
  16. Karjalainen J., Mononen N., Hutri-Kähönen N., Lehtimäki M., Juonala M., Ala-Korpela M. et al. The effect of apolipoprotein E polymorphism on serum metabolome – a population-based 10-year follow-up study. Sci. Rep. 2019; 9: 458. DOI: 10.1038/s41598-018-36450-9
  17. Jellinger P.S., Handelsman Y., Rosenblit P.D., Bloomgarden Z.T., Fonseca V.A., Garber A.J. et al. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Executive summary complete appendix to guidelines. Endocr. Pract. 2017; 23: 479–497. DOI: 10.4158/EP171764.APPGL
  18. Wang Y., Du X., Zhao R., Niu J., Wang H., Li J. Association of APOE polymorphisms with lipid-lowering efficacy of statins in atherosclerotic cardiovascular diseases. Ann. Acad. Med. Singap. 2021; 50 (6): 474–480. DOI: 10.47102/annals-acadmedsg.2020505
  19. Kirac D., Bayam E., Dagdelen M., Gezmis H., Sarikaya S., Pala S. et al. HMGCR and ApoE mutations may cause different responses to lipid lowering statin therapy. Cell. Mol. Biol. (Noisy-le-grand). 2017; 63: 43–48. DOI: 10.14715/cmb/2017.63.10.6
  20. Teterina M., Geraskin A., Potapov P., Babaeva L., Pisaryuk A., Goreva L. et al. The impact of APOC3 and APOE gene polymorphisms on response to statin therapy in acute myocardial infarction. Eur. Heart J. 2019; 40: 430. DOI: 10.1093/eurheartj/ehz747.0428
  21. Thompson J.F., Man M., Johnson K.J., Wood L.S., Lira M.E., Lloyd D.B. et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenom. J. 2005; 5: 352–358. DOI: 10.1038/sj.tpj.6500328
  22. Mega J.L., Morrow D.A., Brown A., Cannon C.P., Sabatine M.S. Identification of genetic variants associated with response to statin therapy. Arterioscler. Thromb. Vasc. Biol. 2009; 29: 1310–1315. DOI: 10.1161/ATVBAHA.109.188474
  23. Konialis C., Spengos K., Iliopoulos P., Karapanou S., Gialafos E., Hagnefelt B. et al. The APOE E4 allele confers increased risk of ischemic stroke among Greek carriers. Adv. Clin. Exp. Med. 2016; 25: 471–478. DOI: 10.17219/acem/38841
  24. Karjalainen J.P., Mononen N., Hutri-Kähönen N., Lehtimäki M., Hilvo M., Kauhanen D. et al. New evidence from plasma ceramides links apoE polymorphism to greater risk of coronary artery disease in Finnish adults. J. Lipid. Res. 2019; 60: 1622–9162. DOI: 10.1194/jlr.M092809
  25. Barber M.J., Mangravite L.M., Hyde C.L., Chasman D.I., Smith J.D., McCarty C.A. et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS ONE. 2010; 5: e9763. DOI: 10.1371/journal.pone.0009763
  26. Zintzaras E., Kitsios G.D., Triposkiadis F., Lau J., Raman G. APOE gene polymorphisms and response to statin therapy. Pharmacogenom. J. 2009; 9: 248–257. DOI: 10.1038/tpj.2009.25 28.
  27. Postmus I., Verschuren J.J.W., de Craen, A.J.M., Slagboom P.E., Westendorp R.G.J., Jukema J.W., Trompet S. Pharmacogenetics of statins: achievements, whole-genome analyses and future perspectives. Pharmacogenomics. 2012; 13: 831–840. DOI: 10.2217/pgs.12.25
  28. Buziashvili Yu.I., Koksheneva I.V., Kakauridze M.A., Abukov S.T., Inauri I.A., Matskeplishvili S.T. The influence of genetic polymorphism of ApoE on the effectiveness of statin therapy and clinical results of percutaneous coronary interventions in patients with coronary heart disease. Technologies of Living Systems. 2017; 14 (4): 39–50 (in Russ.).
  29. Buziashvili Yu.I., Koksheneva I.V., Abukov S.T., Kakauridze M.A., Inauri I.A., Matskeplishvili S.T. The relationship of ApoE gene polymorphism (RS405509) with lipid metabolism and long-term results of endovascular treatment of patients with coronary artery disease. Technologies of Living Systems. 2017; 14 (5): 39–50 (in Russ.).
  30. Gerdes L.U., Gerdes C., Kervinen K., Savolainen M., Klausen I.C., Hansen P.S., Kesaniemi Y.A., Faergeman O. The apolipoprotein epsilon4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation. 2000; 101: 1366–1371. DOI: 10.1161/01.cir. 101.12.1366
  31. Sychev D.A., Semenov A.V., Ramenskaya G.V., Ignatiev I.V., Paukov S.V., Kukes V.G. Pharmacogenetics of HMG-CoA reductase inhibitors (statins): possibilities for individualization therapy based on genotype. Cardiovascular Therapy and Prevention. 2006; 5 (1): 100–104 (in Russ.).
  32. Leonova M.V. Pharmacogenetics of pharmacodynamic targets of statins. Pharmacogenetics and Рharmacogenomics. 2019; 1: 3–11 (in Russ.). DOI: 10.24411/2588-0527-2019-10035
  33. Leonova M.V., Gaisenok O.V., Leonov A.S. Pharmacogenetics of statins: the role of polymorphisms of metabolizing enzymes and transporters. Consilium Medicum. 2018; 20 (10): 20–28 (in Russ.). DOI: 10.26442/2075-1753_2018.10.20-28
  34. Danilenko N.G., Sidorovich E.K., Aksenova E.A. Pharmacogenetics of statins: the influence of polymorphic alleles of the slco1b1, abcb1, abcg2 genes on the therapeutic effect and the development of undesirable side effects. Neurology and Neurosurgery. 2019; 9 (4): 516–529 (in Russ.).
  35. Kazakov R.E., Checha O.A., Muslimova O.V., Demchenkova E.Yu., Aleksandrova T.V., Evteev V.A. et al. Pharmacogenetic approaches to increasing the effectiveness and safety of statins using the example of atorvastatin. Safety and Risk of Pharmacotherapy. 2020; 8 (1): 43–51 (in Russ.). DOI: 10.30895/2312-7821-2020-8-1-43-51
  36. Angelini S., Rosticci M., Massimo G., Musti M., Ravegnini G., Consolini N. et al. Relationship between lipid phenotypes, overweight, lipid lowering drug response and KIF6 and HMG-CoA genotypes in a subset of the brisighella heart study population. Int. J. Mol. Sci. 2017; 19 (1): 49. DOI: 10.3390/ijms19010049
  37. Guan Z.W., Wu K.R., Li R., Yin Y., Li X.L., Zhang S.F., Li Y. Pharmacogenetics of statins treatment: Efficacy and safety. J. Clin. Pharm. Ther. 2019; 44 (6): 858–867. DOI: 10.1111/jcpt.13025
  38. Ruaño G., Seip R., Windemuth A., Wu A.H., Thompson P.D. Laboratory medicine in the clinical decision support for treatment of hypercholesterolemia: pharmacogenetics of statins. Clin. Lab. Med. 2016; 36 (3): 473–491. DOI: 10.1016/j.cll.2016.05.010

About Authors

  • Inna V. Koksheneva, Dr. Med. Sci., Senior Researcher; ORCID
  • Tabarik R. Temirbulatova, Postgraduate
  • Alena V. Grishenok, Postgraduate

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery