Ventricular arrhythmias in ischemic and nonischemic cardiomyopathies: from arrhythmia mechanisms to visualization of arrhythmogenic substrate using magnetic resonance imaging
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Berdibekov B.Sh., Aleksandrova S.A., Bulaeva N.I., Golukhova E.Z. Ventricular arrhythmias in ischemic and non- ischemic cardiomyopathies: from arrhythmia mechanisms to visualization of arrhythmogenic substrate using magnetic resonance imaging. Creative Cardiology. 2024; 18 (2): 125–137 (in Russ.). DOI: 10.24022/1997-3187-2024-18-2-125-137
Received / Accepted: 19.03.2024 / 07.05.2024
Keywords: sudden cardiac death magnetic-resonance tomography late gadolinium enhancement ventricular arrhythmias
Abstract
Ischemic and non-ischemic cardiomyopathies are among the most significant conditions contributing to the development of ventricular arrhythmias and sudden cardiac death (SCD). Various predictors have been proposed, with a primary focus on left ventricular ejection fraction and functional classification of heart failure (II–III) according to NYHA. Left ventricular fibrosis plays a decisive role in the genesis of ventricular arrhythmias in this patient population. Recently, the assessment of ventricular fibrosis using late gadolinium enhancement (LGE) cardiac magnetic resonance imaging (MRI) has been suggested as a potential marker for the stratification of sudden death risk. The review is dedicated to the most common causes of sudden death – substrate-associated ventricular arrhythmias in ischemic and dilated cardiomyopathies. The possibilities of visualizing the arrhythmogenic substrate using modern MRI methods and the stratification of SCD risk are discussed.References
- Hayashi M., Shimizu W., Albert C.M. The spectrum of epidemiology underlying sudden cardiac death. Circ. Res. 2015; 116 (12): 1887–906. DOI: 10.1161/CIRCRESAHA.116.304521
- Keil L., Chevalier C., Kirchhof P., Blankenberg S., Lund G., Müllerleile K., Magnussen C. CMR-based risk stratification of sudden cardiac death and use of implantable cardioverterdefibrillator in non-ischemic cardiomyopathy. Int. J. Mol. Sci. 2021; 22 (13): 7115. DOI: 10.3390/ijms22137115
- Al-Khatib S.M., Stevenson W.G., Ackerman M.J., Bryant W.J., Callans D.J., Curtis A.B. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. Circulation. 2018; 138 (13): e272–e391. DOI: 10.1161/CIR.0000000000000549
- Golukhova E.Z., Gromova O.I., Bulaeva N.I., Bockeria L.A. Sudden cardiac death in patients with ischemic heart disease: from mechanisms to clinical practice. Kardiologiia. 2017; 57 (12): 7381 (in Russ.). DOI: 10.18087/cardio.2017.12.10069
- Avanesyan G.A., Filatov A.G., Shalov R.Z., Kovalev A.S., Saparbaev A.A. Successful elimination of ischemic ventricular tachycardia from the left ventricle using a non-fluoroscopic navigation system in a patient with a cardioverter-implanted defibrillator. Creative Cardiology. 2021; 15 (4): 547–54 (in Russ.). DOI: 10.24022/1997-3187-2021-15-4-547-554
- Ilov N.N., Palnikova O.V., Stompel D.R., Nikolaeva E.V., Nechepurenko A.A. Risk stratification of sudden cardiac death in heart failure patients: is left ventricular ejection fraction alone sufficient? Russian Journal of Cardiology. 2021; 26 (1): 3959 (in Russ.). DOI: 10.15829/1560-4071-2021-3959
- De Bakker J.M., Stein M., van Rijen H.V. Three-dimensional anatomic structure as substrate for ventricular tachycardia/ventricular fibrillation. Heart Rhythm. 2005; 2 (7): 777–779. DOI: 10.1016/j.hrthm.2005.03.022
- Biernacka A., Frangogiannis N.G. Aging and cardiac fibrosis. Aging Dis. 2011; 2 (2): 158–173.
- Hinderer S., Schenke-Layland K. Cardiac fibrosis – a short review of causes and therapeutic strategies. Adv. Drug. Deliv. Rev. 2019; 146: 77–82. DOI: 10.1016/j.addr.2019.05.011
- Liu J., Zhao S., Yu S., Wu G., Wang D., Liu L. et al. Patterns of replacement fibrosis in hypertrophic cardiomyopathy. Radiology. 2022; 302 (2): 298–306. DOI: 10.1148/radiol.2021210914
- Centurión O.A., Alderete J.F., Torales J.M., García L.B., Scavenius K.E., Miño L.M. Myocardial fibrosis as a pathway of prediction of ventricular arrhythmias and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. Crit. Pathw. Cardiol. 2019; 18 (2): 89–97. DOI: 10.1097/HPC.0000000000000171
- Gulati A., Jabbour A., Ismail T.F., Guha K., Khwaja J., Raza S. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013; 309 (9): 896–908. DOI: 10.1001/jama.2013.1363
- Zhu L., Wang Y., Zhao S., Lu M. Detection of myocardial fibrosis: where we stand. Front. Cardiovasc. Med. 2022; 9: 926378. DOI: 10.3389/fcvm.2022.926378
- Шульженко Л.В., Першуков И.В., Батыралиев Т.А., Карбен З.А., Гурович О.В., Фетцер Д.В. и др. Клиническая эволюция диффузного фиброза миокарда у пациентов с артериальной гипертензией и сердечной недостаточностью с промежуточной фракцией выброса левого желудочка, получавших олмесартан или сакубитрил /валсартан. Кардиология. 2023; 63 (12): 31–38. DOI: 10.18087/cardio.2023.12.n2557 Shulzhenko L.V., Pershukov I.V., Batyraliev T.A., Karben Z.A., Gurovich O.V., Fettser D.V. et al. The clinical evolution of diffuse myocardial fibrosis in patients with arterial hypertension and heart failure with mildly reduced ejection fraction treated by olmesartan or sacubitril /valsartan. Kardiologiia. 2023; 63 (12): 31–38 (in Russ.). DOI: 10.18087/cardio.2023.12.n2557
- Robbers L.F., Delewi R., Nijveldt R., Hirsch A., Beek A.M., Kemme M.J. et al. Myocardial infarct heterogeneity assessment by late gadolinium enhancement cardiovascular magnetic resonance imaging shows predictive value for ventricular arrhythmia development after acute myocardial infarction. Eur. Heart J. Cardiovasc. Imaging. 2013; 14 (12): 1150–1158. DOI: 10.1093/ehjci/jet111
- Frampton J., Ortengren A.R., Zeitler E.P. Arrhythmias after acute myocardial infarction. Yale. J. Biol. Med. 2023; 96 (1): 83–94. DOI: 10.59249/LSWK8578
- Liang C., Li Q., Wang K., Du Y., Wang W., Zhang H. Mechanisms of ventricular arrhythmias elicited by coexistence of multiple electrophysiological remodeling in ischemia: a simulation study. PLoS Comput. Biol. 2022; 18 (4): e1009388. DOI: 10.1371/journal.pcbi.1009388
- Piers S.R., Tao Q., de Riva Silva M., Siebelink H.M., Schalij M.J., van der Geest R.J., Zeppenfeld K. CMR-based identification of critical isthmus sites of ischemic and nonischemic ventricular tachycardia. JACC Cardiovasc. Imaging. 2014; 7 (8): 774–784. DOI: 10.1016/j.jcmg.2014.03.013
- Wu K.C. Sudden cardiac death substrate imaged by magnetic resonance imaging: from investigational tool to clinical applications. Circ. Cardiovasc. Imaging. 2017; 10 (7): e005461. DOI: 10.1161/CIRCIMAGING.116.005461
- Estner H.L., Zviman M.M., Herzka D., Miller F., Castro V., Nazarian S. et al. The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging. Heart Rhythm. 2011; 8 (12): 1942– 1949. DOI: 10.1016/j.hrthm.2011.07.027
- Goncharova N.S., Ryzhkov A.V., Lapshin K.B., Kotova A.F., Moiseeva O.M. Cardiac magnetic resonance imaging in mortality risk stratification of patients with pulmonary hypertension. Russian Journal of Cardiology. 2023; 28 (9): 5540 (in Russ.). DOI: 10.15829/15604071-2023-5540
- Pattanayak P., Bleumke D.A. Tissue characterization of the myocardium: state of the art characterization by magnetic resonance and computed tomography imaging. Radiol. Clin. North. Am. 2015; 53 (2): 413–123. DOI: 10.1016/j.rcl.2014.11.005
- Mewton N., Liu C.Y., Croisille P., Bluemke D., Lima J.A. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 2011; 57 (8): 891–903. DOI: 10.1016/j.jacc.2010.11.013
- Bustin A., Witschey W.R.T., van Heeswijk R.B., Cochet H., Stuber M. Magnetic resonance myocardial T1ρ mapping: technical overview, challenges, emerging developments, and clinical applications. J. Cardiovasc. Magn. Reson. 2023; 25 (1): 34. DOI: 10.1186/s12968-023-00940-1
- Zhang L., Athavale P., Pop M., Wright G.A. Multicontrast reconstruction using compressed sensing with low rank and spatially varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction. Magn. Reson. Med. 2017; 78 (2): 598–610. DOI: 10.1002/mrm.26402
- Raymond J.M., Sacher F., Winslow R., Tedrow U., Stevenson W.G. Catheter ablation for scar-related ventricular tachycardias. Curr. Probl. Cardiol. 2009; 34 (5): 225–270. DOI: 10.1016/j.cpcardiol.2009.01.002
- Roes S.D., Borleffs C.J., van der Geest R.J., Westenberg J.J., Marsan N.A., Kaandorp T.A. et al. Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ. Cardiovasc. Imaging. 2009; 2 (3): 183–190. DOI: 10.1161/CIRCIMAGING.108.826529
- Yan A.T., Shayne A.J., Brown K.A., Gupta S.N., Chan C.W., Luu T.M. et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006; 114 (1): 32–39. DOI: 10.1161/CIRCULATIONAHA.106.613414
- Iles L.M., Ellims A.H., Llewellyn H., Hare J.L., Kaye D.M., McLean C.A., Taylor A.J. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (1): 14–22. DOI: 10.1093/ehjci/jeu182
- Andreu D., Ortiz-Pérez J.T., Boussy T., Fernández-Armenta J., de Caralt T.M., Perea R.J. et al. Usefulness of contrast-enhanced cardiac magnetic resonance in identifying the ventricular arrhythmia substrate and the approach needed for ablation. Eur. Heart J. 2014; 35 (20): 1316–1326. DOI: 10.1093/eurheartj/eht510
- Rier S.C., Vreemann S., Nijhof W.H., van Driel V.J.H.M., van der Bilt I.A.C. Interventional cardiac magnetic resonance imaging: current applications, technology readiness level, and future perspectives. Ther. Adv. Cardiovasc. Dis. 2022; 16: 17539447221119624. DOI: 10.1177/17539447221119624
- Disertori M., Rigoni M., Pace N., Casolo G., Masè M., Gonzini L. et al. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta-analysis. JACC Cardiovasc. Imaging. 2016; 9 (9): 1046–1055. DOI: 10.1016/j.jcmg.2016.01.033
- Rayatzadeh H., Tan A., Chan R.H., Patel S.J., Hauser T.H., Ngo L. et al. Scar heterogeneity on cardiovascular magnetic resonance as a predictor of appropriate implantable cardioverter defibrillator therapy. J. Cardiovasc. Magn. Reson. 2013; 15 (1): 31. DOI: 10.1186/1532-429X-15-31
- Jablonowski R., Chaudhry U., van der Pals J., Engblom H., Arheden H., Heiberg E. et al. Cardiovascular magnetic resonance to predict appropriate implantable cardioverter defibrillator therapy in ischemic and nonischemic cardiomyopathy patients using late gadolinium enhancement border zone: comparison of four analysis methods. Circ. Cardiovasc. Imaging. 2017; 10 (9): e006105. DOI: 10.1161/CIRCIMAGING.116.006105
- Shalmon T., Hamad F.M.D., Jimenez-Juan L., Kirpalani A., Urzua Fresno C.M., Folador L. et al. Prognostic value of different thresholds for myocardial scar quantification on cardiac MRI late gadolinium enhancement images in patients receiving implantable cardioverter defibrillators. Radiol. Cardiothorac. Imaging. 2023; 5 (3): e210247. DOI: 10.1148/ryct.210247
- Berdibekov B.Sh., Aleksandrova S.A., Golukhova E.Z. Quantification of myocardial fibrosis in patients with a nonischemic ventricular arrhythmias by late gadolinium-enhanced magnetic resonance. Creative Cardiology. 2021; 15 (3): 342–353 (in Russ.). DOI: 10.24022/1997-3187-2021-15-3-342-353
- Golukhova E.Z., Bulaeva N.I., Alexandrova S.A., Mrikaev D.V., Gromova O.I., Ruzina E.V., Berdibekov B.S. The extent of late gadolinium enhancement predicts mortality, sudden death and major adverse cardiovascular events in patients with nonischaemic cardiomyopathy: a systematic review and metaanalysis. Clin. Radiol. 2023; 78 (4): e342–e349. DOI: 10.1016/j.crad.2022.12.015
- Golukhova E., Bulaeva N., Alexandrova S., Gromova O., Berdibekov B. Prognostic value of characterizing myocardial tissue by cardiac MRI with T1 mapping in HFpEF patients: a systematic review and meta-analysis. J. Clin. Med. 2022; 11 (9): 2531. DOI: 10.3390/jcm11092531
- Cadour F., Quemeneur M., Biere L., Donal E., Bentatou Z., Eicher J.C. et al. Prognostic value of cardiovascular magnetic resonance T1 mapping and extracellular volume fraction in nonischemic dilated cardiomyopathy. J. Cardiovasc. Magn. Reson. 2023; 25 (1): 7. DOI: 10.1186/s12968-023-00919-y
- Zhou D., Zhu L., Wu W., Zhuang B., He J., Xu J. et al. A novel cardiac magnetic resonance-based personalized risk stratification model in dilated cardiomyopathy: a prospective study. Eur. Radiol. 2023. DOI: 10.1007/s00330-023-10415-7.
About Authors
- Bektur Sh. Berdibekov, Cardiologist; ORCID
- Svetlana A. Aleksandrova, Cand. Med. Sci., Senior Researcher, Radiologist; ORCID
- Naida I. Bulaeva, Cand. Biol. Sci., Associate Professor, Head of Department, Cardiologist; ORCID
- Elena Z. Golukhova, Dr. Med. Sci., Professor, Academician of RAS, Director; ORCID