Ventricular arrhythmias in ischemic and nonischemic cardiomyopathies: from arrhythmia mechanisms to visualization of arrhythmogenic substrate using magnetic resonance imaging

Authors: Berdibekov B.Sh., Aleksandrova S.A., Bulaeva N.I., Golu- khova E.Z.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2024-18-2-125-137

For citation: Berdibekov B.Sh., Aleksandrova S.A., Bulaeva N.I., Golukhova E.Z. Ventricular arrhythmias in ischemic and non- ischemic cardiomyopathies: from arrhythmia mechanisms to visualization of arrhythmogenic substrate using magnetic resonance imaging. Creative Cardiology. 2024; 18 (2): 125–137 (in Russ.). DOI: 10.24022/1997-3187-2024-18-2-125-137

Received / Accepted:  19.03.2024 / 07.05.2024

Keywords: sudden cardiac death magnetic-resonance tomography late gadolinium enhancement ventricular arrhythmias



Subscribe 🔒

 

Abstract

Ischemic and non-ischemic cardiomyopathies are among the most significant conditions contributing to the development of ventricular arrhythmias and sudden cardiac death (SCD). Various predictors have been proposed, with a primary focus on left ventricular ejection fraction and functional classification of heart failure (II–III) according to NYHA. Left ventricular fibrosis plays a decisive role in the genesis of ventricular arrhythmias in this patient population. Recently, the assessment of ventricular fibrosis using late gadolinium enhancement (LGE) cardiac magnetic resonance imaging (MRI) has been suggested as a potential marker for the stratification of sudden death risk. The review is dedicated to the most common causes of sudden death – substrate-associated ventricular arrhythmias in ischemic and dilated cardiomyopathies. The possibilities of visualizing the arrhythmogenic substrate using modern MRI methods and the stratification of SCD risk are discussed.

References

  1. Hayashi M., Shimizu W., Albert C.M. The spectrum of epidemiology underlying sudden cardiac death. Circ. Res. 2015; 116 (12): 1887–906. DOI: 10.1161/CIRCRESAHA.116.304521
  2. Keil L., Chevalier C., Kirchhof P., Blankenberg S., Lund G., Müllerleile K., Magnussen C. CMR-based risk stratification of sudden cardiac death and use of implantable cardioverterdefibrillator in non-ischemic cardiomyopathy. Int. J. Mol. Sci. 2021; 22 (13): 7115. DOI: 10.3390/ijms22137115
  3. Al-Khatib S.M., Stevenson W.G., Ackerman M.J., Bryant W.J., Callans D.J., Curtis A.B. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. Circulation. 2018; 138 (13): e272–e391. DOI: 10.1161/CIR.0000000000000549
  4. Golukhova E.Z., Gromova O.I., Bulaeva N.I., Bockeria L.A. Sudden cardiac death in patients with ischemic heart disease: from mechanisms to clinical practice. Kardiologiia. 2017; 57 (12): 7381 (in Russ.). DOI: 10.18087/cardio.2017.12.10069
  5. Avanesyan G.A., Filatov A.G., Shalov R.Z., Kovalev A.S., Saparbaev A.A. Successful elimination of ischemic ventricular tachycardia from the left ventricle using a non-fluoroscopic navigation system in a patient with a cardioverter-implanted defibrillator. Creative Cardiology. 2021; 15 (4): 547–54 (in Russ.). DOI: 10.24022/1997-3187-2021-15-4-547-554
  6. Ilov N.N., Palnikova O.V., Stompel D.R., Nikolaeva E.V., Nechepurenko A.A. Risk stratification of sudden cardiac death in heart failure patients: is left ventricular ejection fraction alone sufficient? Russian Journal of Cardiology. 2021; 26 (1): 3959 (in Russ.). DOI: 10.15829/1560-4071-2021-3959
  7. De Bakker J.M., Stein M., van Rijen H.V. Three-dimensional anatomic structure as substrate for ventricular tachycardia/ventricular fibrillation. Heart Rhythm. 2005; 2 (7): 777–779. DOI: 10.1016/j.hrthm.2005.03.022
  8. Biernacka A., Frangogiannis N.G. Aging and cardiac fibrosis. Aging Dis. 2011; 2 (2): 158–173.
  9. Hinderer S., Schenke-Layland K. Cardiac fibrosis – a short review of causes and therapeutic strategies. Adv. Drug. Deliv. Rev. 2019; 146: 77–82. DOI: 10.1016/j.addr.2019.05.011
  10. Liu J., Zhao S., Yu S., Wu G., Wang D., Liu L. et al. Patterns of replacement fibrosis in hypertrophic cardiomyopathy. Radiology. 2022; 302 (2): 298–306. DOI: 10.1148/radiol.2021210914
  11. Centurión O.A., Alderete J.F., Torales J.M., García L.B., Scavenius K.E., Miño L.M. Myocardial fibrosis as a pathway of prediction of ventricular arrhythmias and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. Crit. Pathw. Cardiol. 2019; 18 (2): 89–97. DOI: 10.1097/HPC.0000000000000171
  12. Gulati A., Jabbour A., Ismail T.F., Guha K., Khwaja J., Raza S. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013; 309 (9): 896–908. DOI: 10.1001/jama.2013.1363
  13. Zhu L., Wang Y., Zhao S., Lu M. Detection of myocardial fibrosis: where we stand. Front. Cardiovasc. Med. 2022; 9: 926378. DOI: 10.3389/fcvm.2022.926378
  14. Шульженко Л.В., Першуков И.В., Батыралиев Т.А., Карбен З.А., Гурович О.В., Фетцер Д.В. и др. Клиническая эволюция диффузного фиброза миокарда у пациентов с артериальной гипертензией и сердечной недостаточностью с промежуточной фракцией выброса левого желудочка, получавших олмесартан или сакубитрил /валсартан. Кардиология. 2023; 63 (12): 31–38. DOI: 10.18087/cardio.2023.12.n2557 Shulzhenko L.V., Pershukov I.V., Batyraliev T.A., Karben Z.A., Gurovich O.V., Fettser D.V. et al. The clinical evolution of diffuse myocardial fibrosis in patients with arterial hypertension and heart failure with mildly reduced ejection fraction treated by olmesartan or sacubitril /valsartan. Kardiologiia. 2023; 63 (12): 31–38 (in Russ.). DOI: 10.18087/cardio.2023.12.n2557
  15. Robbers L.F., Delewi R., Nijveldt R., Hirsch A., Beek A.M., Kemme M.J. et al. Myocardial infarct heterogeneity assessment by late gadolinium enhancement cardiovascular magnetic resonance imaging shows predictive value for ventricular arrhythmia development after acute myocardial infarction. Eur. Heart J. Cardiovasc. Imaging. 2013; 14 (12): 1150–1158. DOI: 10.1093/ehjci/jet111
  16. Frampton J., Ortengren A.R., Zeitler E.P. Arrhythmias after acute myocardial infarction. Yale. J. Biol. Med. 2023; 96 (1): 83–94. DOI: 10.59249/LSWK8578
  17. Liang C., Li Q., Wang K., Du Y., Wang W., Zhang H. Mechanisms of ventricular arrhythmias elicited by coexistence of multiple electrophysiological remodeling in ischemia: a simulation study. PLoS Comput. Biol. 2022; 18 (4): e1009388. DOI: 10.1371/journal.pcbi.1009388
  18. Piers S.R., Tao Q., de Riva Silva M., Siebelink H.M., Schalij M.J., van der Geest R.J., Zeppenfeld K. CMR-based identification of critical isthmus sites of ischemic and nonischemic ventricular tachycardia. JACC Cardiovasc. Imaging. 2014; 7 (8): 774–784. DOI: 10.1016/j.jcmg.2014.03.013
  19. Wu K.C. Sudden cardiac death substrate imaged by magnetic resonance imaging: from investigational tool to clinical applications. Circ. Cardiovasc. Imaging. 2017; 10 (7): e005461. DOI: 10.1161/CIRCIMAGING.116.005461
  20. Estner H.L., Zviman M.M., Herzka D., Miller F., Castro V., Nazarian S. et al. The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging. Heart Rhythm. 2011; 8 (12): 1942– 1949. DOI: 10.1016/j.hrthm.2011.07.027
  21. Goncharova N.S., Ryzhkov A.V., Lapshin K.B., Kotova A.F., Moiseeva O.M. Cardiac magnetic resonance imaging in mortality risk stratification of patients with pulmonary hypertension. Russian Journal of Cardiology. 2023; 28 (9): 5540 (in Russ.). DOI: 10.15829/15604071-2023-5540
  22. Pattanayak P., Bleumke D.A. Tissue characterization of the myocardium: state of the art characterization by magnetic resonance and computed tomography imaging. Radiol. Clin. North. Am. 2015; 53 (2): 413–123. DOI: 10.1016/j.rcl.2014.11.005
  23. Mewton N., Liu C.Y., Croisille P., Bluemke D., Lima J.A. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 2011; 57 (8): 891–903. DOI: 10.1016/j.jacc.2010.11.013
  24. Bustin A., Witschey W.R.T., van Heeswijk R.B., Cochet H., Stuber M. Magnetic resonance myocardial T1ρ mapping: technical overview, challenges, emerging developments, and clinical applications. J. Cardiovasc. Magn. Reson. 2023; 25 (1): 34. DOI: 10.1186/s12968-023-00940-1
  25. Zhang L., Athavale P., Pop M., Wright G.A. Multicontrast reconstruction using compressed sensing with low rank and spatially varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction. Magn. Reson. Med. 2017; 78 (2): 598–610. DOI: 10.1002/mrm.26402
  26. Raymond J.M., Sacher F., Winslow R., Tedrow U., Stevenson W.G. Catheter ablation for scar-related ventricular tachycardias. Curr. Probl. Cardiol. 2009; 34 (5): 225–270. DOI: 10.1016/j.cpcardiol.2009.01.002
  27. Roes S.D., Borleffs C.J., van der Geest R.J., Westenberg J.J., Marsan N.A., Kaandorp T.A. et al. Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ. Cardiovasc. Imaging. 2009; 2 (3): 183–190. DOI: 10.1161/CIRCIMAGING.108.826529
  28. Yan A.T., Shayne A.J., Brown K.A., Gupta S.N., Chan C.W., Luu T.M. et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006; 114 (1): 32–39. DOI: 10.1161/CIRCULATIONAHA.106.613414
  29. Iles L.M., Ellims A.H., Llewellyn H., Hare J.L., Kaye D.M., McLean C.A., Taylor A.J. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (1): 14–22. DOI: 10.1093/ehjci/jeu182
  30. Andreu D., Ortiz-Pérez J.T., Boussy T., Fernández-Armenta J., de Caralt T.M., Perea R.J. et al. Usefulness of contrast-enhanced cardiac magnetic resonance in identifying the ventricular arrhythmia substrate and the approach needed for ablation. Eur. Heart J. 2014; 35 (20): 1316–1326. DOI: 10.1093/eurheartj/eht510
  31. Rier S.C., Vreemann S., Nijhof W.H., van Driel V.J.H.M., van der Bilt I.A.C. Interventional cardiac magnetic resonance imaging: current applications, technology readiness level, and future perspectives. Ther. Adv. Cardiovasc. Dis. 2022; 16: 17539447221119624. DOI: 10.1177/17539447221119624
  32. Disertori M., Rigoni M., Pace N., Casolo G., Masè M., Gonzini L. et al. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta-analysis. JACC Cardiovasc. Imaging. 2016; 9 (9): 1046–1055. DOI: 10.1016/j.jcmg.2016.01.033
  33. Rayatzadeh H., Tan A., Chan R.H., Patel S.J., Hauser T.H., Ngo L. et al. Scar heterogeneity on cardiovascular magnetic resonance as a predictor of appropriate implantable cardioverter defibrillator therapy. J. Cardiovasc. Magn. Reson. 2013; 15 (1): 31. DOI: 10.1186/1532-429X-15-31
  34. Jablonowski R., Chaudhry U., van der Pals J., Engblom H., Arheden H., Heiberg E. et al. Cardiovascular magnetic resonance to predict appropriate implantable cardioverter defibrillator therapy in ischemic and nonischemic cardiomyopathy patients using late gadolinium enhancement border zone: comparison of four analysis methods. Circ. Cardiovasc. Imaging. 2017; 10 (9): e006105. DOI: 10.1161/CIRCIMAGING.116.006105
  35. Shalmon T., Hamad F.M.D., Jimenez-Juan L., Kirpalani A., Urzua Fresno C.M., Folador L. et al. Prognostic value of different thresholds for myocardial scar quantification on cardiac MRI late gadolinium enhancement images in patients receiving implantable cardioverter defibrillators. Radiol. Cardiothorac. Imaging. 2023; 5 (3): e210247. DOI: 10.1148/ryct.210247
  36. Berdibekov B.Sh., Aleksandrova S.A., Golukhova E.Z. Quantification of myocardial fibrosis in patients with a nonischemic ventricular arrhythmias by late gadolinium-enhanced magnetic resonance. Creative Cardiology. 2021; 15 (3): 342–353 (in Russ.). DOI: 10.24022/1997-3187-2021-15-3-342-353
  37. Golukhova E.Z., Bulaeva N.I., Alexandrova S.A., Mrikaev D.V., Gromova O.I., Ruzina E.V., Berdibekov B.S. The extent of late gadolinium enhancement predicts mortality, sudden death and major adverse cardiovascular events in patients with nonischaemic cardiomyopathy: a systematic review and metaanalysis. Clin. Radiol. 2023; 78 (4): e342–e349. DOI: 10.1016/j.crad.2022.12.015
  38. Golukhova E., Bulaeva N., Alexandrova S., Gromova O., Berdibekov B. Prognostic value of characterizing myocardial tissue by cardiac MRI with T1 mapping in HFpEF patients: a systematic review and meta-analysis. J. Clin. Med. 2022; 11 (9): 2531. DOI: 10.3390/jcm11092531
  39. Cadour F., Quemeneur M., Biere L., Donal E., Bentatou Z., Eicher J.C. et al. Prognostic value of cardiovascular magnetic resonance T1 mapping and extracellular volume fraction in nonischemic dilated cardiomyopathy. J. Cardiovasc. Magn. Reson. 2023; 25 (1): 7. DOI: 10.1186/s12968-023-00919-y
  40. Zhou D., Zhu L., Wu W., Zhuang B., He J., Xu J. et al. A novel cardiac magnetic resonance-based personalized risk stratification model in dilated cardiomyopathy: a prospective study. Eur. Radiol. 2023. DOI: 10.1007/s00330-023-10415-7.

About Authors

  • Bektur Sh. Berdibekov, Cardiologist; ORCID
  • Svetlana A. Aleksandrova, Cand. Med. Sci., Senior Researcher, Radiologist; ORCID
  • Naida I. Bulaeva, Cand. Biol. Sci., Associate Professor, Head of Department, Cardiologist; ORCID
  • Elena Z. Golukhova, Dr. Med. Sci., Professor, Academician of RAS, Director; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery